Novel Bimolecular Reactions between NH_{3} and $\mathbf{H N O}_{3}$ in the Gas Phase

R. N. Musin
Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russia
M. C. Lin*
Department of Chemistry, Emory University, Atlanta, Georgia 30322
Received: November 10, 1997; In Final Form: January 8, 1998

Abstract

High-level molecular orbital calculations have been performed in the framework of the G2M method to explore the reactivity between NH_{3} and HNO_{3}, key molecular reactants in ammonium nitrate and ammonium nitramide systems. Two nonionic molecular reaction channels have been identified with a similar reaction barrier, 46 $\mathrm{kcal} / \mathrm{mol}$. One channel occurring via a four-member-ring transition state produces $\mathrm{H}_{2} \mathrm{NNO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1), and the other, taking place via a five-member-ring transition state, yields $\mathrm{H}_{2} \mathrm{NONO}+\mathrm{H}_{2} \mathrm{O}$ (2). A transitionstate theory calculation employing the predicted energies and molecular parameters gave rise to the rate constants $k_{1}=0.81 T^{3.47} \mathrm{e}^{-21670 / T}$ and $k_{2}=23.2 T^{3.50} \mathrm{e}^{-22610 / T}$ for the temperature range $300-3000 \mathrm{~K}$ in units of $\mathrm{cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$. In addition to the reactants, products, and transition states associated with the two reaction channels, several local minima (or molecular complexes) and secondary reaction products derived from the structural rearrangement of some of the molecular complexes, such as $\mathrm{H}_{3} \mathrm{NO}$ and $\mathrm{H}_{2} \mathrm{NOH}$, have been identified and their energies calculated at the G2M level of theory.

I. Introduction

Ammonium salts are unstable in their ionic forms at elevated temperatures; they typically sublime to yield ammonia and acids under low-pressure conditions. For ammonium nitrate, NH_{3} and HNO_{3} are the low-pressure sublimation products. Under atmospheric or higher pressure conditions, however, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ melts near 520 K to produce primarily $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ via ionic reactions, presumably involving $\mathrm{NO}_{2}{ }^{+}$and $\mathrm{NH}_{3} .{ }^{1,2}$

In our present series of studies on the mechanisms of reactions involving $\mathrm{H} / \mathrm{N} / \mathrm{O}$-containing species in conjunction with their potential applications to propulsion and the reduction of NO_{x} with $\mathrm{NH}_{3},{ }^{3-17}$ we have investigated the interaction of NH_{3} and HNO_{3}, over the temperature range $700-1000 \mathrm{~K} .{ }^{18}$

The $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction above 800 K can be quantitatively characterized by a radical chain process initiated by the decomposition of $\mathrm{HNO}_{3}, \mathrm{HNO}_{3}+\mathrm{M} \rightarrow \mathrm{OH}+\mathrm{NO}_{2}+\mathrm{M}$, followed by $\mathrm{OH}+\mathrm{NH}_{3}$ and the reactions of NH_{2} with NO_{x}, leading to the formation of N_{2} and $\mathrm{N}_{2} \mathrm{O}$. At temperatures below 800 K , at which the rate of the HNO_{3} decomposition reaction becomes slower, the same radical mechanism was found to be inadequate for the prediction of the NH_{3} decay rate and the rates of $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ formation. ${ }^{18}$

To search for the processes responsible for the observed "enhanced" rates of the reaction, we have carried out a comprehensive ab initio molecular orbital (MO) theory study of the bimolecular reaction of NH_{3} and HNO_{3} focusing on the direct interaction of the nucleophilic N atom in NH_{3} with the electrophilic N atom in HNO_{3}. The investigation reveals for the first time two reaction paths leading to the formation of highly reactive molecular intermediates, $\mathrm{H}_{2} \mathrm{NNO}_{2}$ and $\mathrm{H}_{2} \mathrm{NONO}$. These reactive species, whose stabilities have been calculated in our previous study on the $\mathrm{NH}_{2}+\mathrm{NO}_{2}$ reaction, ${ }^{7}$ may be responsible for the enhanced rate of the $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction in the low-temperature regime ($T \leq 800 \mathrm{~K}$), particularly under

[^0]high-pressure conditions. The results of the ab initio MO calculation and the predicted rate constants for these novel redox processes by the transition-state theory (TST) are reported herein.

II. Computation Methods

The potential energy surface for the reaction of ammonia with nitric acid was studied in the framework of the ab initio G2M method, ${ }^{6}$ which is a modification of the Gaussian-2 (G2) methodology, developed by Pople and co-workers. ${ }^{19}$ It has been shown earlier that various schemes of the G2M approach enable accurate predictions of the energetics of molecular systems with closed and open shells containing up to six to eight heavy atoms. ${ }^{6,20,21}$ In the present paper, we have employed the G2M(RCC,MP2) scheme of the G2M method, which gives an average absolute deviation of $1.15 \mathrm{kcal} / \mathrm{mol}$ of calculated atomization energies from experiments for 32 first-row compounds tested by the original G2 method ${ }^{19}$ (in the case of triple- ζ basis set $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ with 2 p and 3 d polarization functions). This approach includes a series of MPn (Møller-Plessett perturbation method of the nth order) ${ }^{22}$ and $\operatorname{RCCSD}(\mathrm{T})$ (restricted single- and double-excitation coupled cluster method) ${ }^{23}$ calculations to improve the MP4 base energy $E_{\text {bas }}=E[$ PMP4/ $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})]$ with the correction for electron correlation,

$$
\Delta E(\mathrm{RCC})=E[\operatorname{RCCSD}(\mathrm{~T}) / 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p})]-E_{\mathrm{bas}}
$$

the correction for basis set expansion,

$$
\begin{array}{r}
\Delta E(+3 \mathrm{df} 2 \mathrm{p})=E[\mathrm{PMP} 2 / 6-311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})]- \\
E[\mathrm{PMP} 2 / 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p})]
\end{array}
$$

and the empirical "higher level correction" given in hartrees,

$$
\Delta E(\mathrm{HLC}, \mathrm{RCC} 5)=-0.00525 n_{\beta}-0.00019 n_{\alpha}
$$

based on the number of paired and unpaired electrons. Here,

Figure 1. B3LYP/6-311G(d,p) optimized structures (bond lengths in \AA, bond angles in deg) of reactants and products involved in the $\mathrm{NH}_{3}+$ HNO_{3} reaction.

TABLE 1: Total Energies and ZPE (in hartrees) of Reactants and the Relative Energies (in kcal/mol, ZPE Included) of Intermediates $\mathrm{LM} \boldsymbol{n}(\boldsymbol{n}=1-4)$, Transition States $\mathrm{TS} \boldsymbol{n}(\boldsymbol{n}=1-4)$, and Products for the $\mathrm{NH}_{3}+\mathrm{HONO}_{2}$ Reaction, Calculated by B3LYP, MP2, RCCSD(T), and G2M Methods

species	ZPE	$\begin{gathered} \text { B3LYP/ } \\ 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	$\begin{gathered} \text { MP2/ } \\ 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	$\begin{aligned} & \text { MP2/6-311 } \\ & +\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}) \end{aligned}$	$\begin{aligned} & \operatorname{RCCSD}(\mathrm{T}) / \\ & 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{aligned}$	$\begin{gathered} \text { G2M } \\ \text { (RCC,MP2) } \end{gathered}$
$\mathrm{NH}_{3}+\mathrm{HONO}_{2}$	0.060766	-337.482 643	$\begin{gathered} \text { Reactants } \\ -336.660643 \end{gathered}$	-336.881 027	-336.704 585	-337.012 009
Intermediates and Transition States						
TS1	36.91	37.48	38.54	37.74	46.45	45.66
TS2	35.65	57.68	50.51	51.30	45.18	45.96
LM1	40.36	-20.80	-21.22	-20.33	-20.45	-19.56
LM2	38.14	6.63	7.86	9.00	1.46	2.60
TS3	39.12	36.82	43.79	41.51	37.09	34.80
LM3	39.34	36.95	44.19	41.82	34.50	35.12
LM4	40.14	3.32	6.64	10.81	0.29	4.46
TS4	39.35	6.97	9.80	13.62	3.41	7.23
$\mathrm{H}_{3} \mathrm{NO}+\mathrm{HONO}$	37.77	29.50	49.20	45.32	42.05	38.16
$\mathrm{H}_{2} \mathrm{NOH}+\mathrm{HONO}$	37.74	20.27	22.96	24.80	15.81	17.66
$\mathrm{H}_{2} \mathrm{NONO}+\mathrm{H}_{2} \mathrm{O}$	38.12	11.49	14.92	14.55	8.11	7.74
$\mathrm{H}_{2} \mathrm{NNO}_{2}+\mathrm{H}_{2} \mathrm{O}$	39.87	-11.22	-11.11	-12.45	-10.69	-12.03

Figure 2. B3LYP/6-311G(d,p) optimized structures (bond lengths in \AA, angles in deg) of intermediates of the $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction.

TABLE 2: Optimized Geometries (in \AA and deg) for $\mathrm{H}_{2} \mathrm{NNO}_{2}$ and $\mathrm{NH}_{2} \mathrm{ONO}$ Species, Calculated by Using HF, MP2, MCSCF, and B3LYP Methods: Comparison with Experimental Data

geometr. parameters	$\begin{gathered} \mathrm{HF} / \\ 6-31 \mathrm{G}(\mathrm{~d})^{a} \end{gathered}$	$\begin{gathered} \text { MP2/ } \\ 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p})^{b} \end{gathered}$	$\underset{4-31 \mathrm{G}^{c}}{\mathrm{MCSCF}}$	$\begin{gathered} \text { B3LYP/ } \\ 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p})^{d} \end{gathered}$	$\text { expt }^{e}$
		$\mathrm{H}_{2} \mathrm{NNO}_{2}$			
$\mathrm{N}(1) \mathrm{N}(2)$	1.356	1.403	1.418	1.396	1.381
$\mathrm{O}(1) \mathrm{N}(2)$	1.191	1.221	1.227	1.218	1.232
$\mathrm{N}(1) \mathrm{H}(1)$	0.998	1.013	0.991	1.012	1.007
$\angle \mathrm{HNH}$	116.8	114.0	123.3	116.5	120.9
$\angle \mathrm{ONO}$	127.0	127.8	126.6	127.5	132.7
$\angle \mathrm{N}(2) \mathrm{N}(1) \mathrm{H}$	110.5	108.2	113.5	109.9	132.7
$\angle \mathrm{N}(1) \mathrm{N}(2) \mathrm{O}$	116.5	116.1	116.7	116.2	113.6
$\angle \mathrm{O}(2) \mathrm{N}(2) \mathrm{O}(1) \mathrm{N}(1)$	177.6	179.4	178.1	176.5	
$\angle \mathrm{H}(1) \mathrm{N}(1) \mathrm{N}(2) \mathrm{O}(1)$	25.6	28.3	16.8	27.0	
		$\mathrm{NH}_{2} \mathrm{ONO}$			
$\mathrm{N}(1) \mathrm{O}(1)$	1.393	1.421	1.413	1.424	
$\mathrm{O}(1) \mathrm{N}(2)$	1.356	1.455	1.675	1.474	
$\mathrm{N}(2) \mathrm{O}(2)$	1.153	1.175	1.164	1.162	
$\mathrm{N}(1) \mathrm{H}(1)$	1.002	1.017	0.996	1.018	
$\angle \mathrm{H}(1) \mathrm{N}(1) \mathrm{O}(1)$	104.5	103.9	108.1	104.1	
$\angle \mathrm{N}(1) \mathrm{O}(1) \mathrm{N}(2)$	108.7	106.2	105.5	107.1	
$\angle \mathrm{H}(1) \mathrm{N}(1) \mathrm{H}(2)$		106.8	114.3	107.2	
$\angle \mathrm{H}(1) \mathrm{N}(1) \mathrm{O}(1) \mathrm{N}(2)$	123.5	124.2	117.9	124.0	
$\angle \mathrm{O}(2) \mathrm{N}(2) \mathrm{O}(1) \mathrm{N}(2)$	180.0	180.0	180.0	180.0	

${ }^{a}$ Reference 28. ${ }^{b}$ Reference 7. ${ }^{c}$ Reference 29. ${ }^{d}$ Present work. ${ }^{e}$ Reference 30 .

PMP n stands for the spin-projected PUMP n energies for open shell systems and RMP n energies for closed shell systems, and n_{α} and n_{β} are the number of α and β valence electrons ($n_{\alpha} \geq$ n_{β}), respectively. The ZPE (zero-point energy)-corrected total energy of molecular systems in this scheme is expressed as follows:

$$
\begin{array}{r}
E[\mathrm{G} 2 \mathrm{M}(\mathrm{RCC}, \mathrm{MP} 2)]=E_{\text {bas }}+\Delta E(\mathrm{RCC})+\Delta E(+3 \mathrm{df} 2 \mathrm{p})+ \\
\Delta E(\mathrm{HLC}, \mathrm{RCC} 5)+\mathrm{ZPE}[\mathrm{~B} 3 \mathrm{LYP} / 6-311 \mathrm{G}(\mathrm{~d}, \mathrm{p})]
\end{array}
$$

The largest calculation in this case is $\operatorname{RCCSD}(\mathrm{T}) / 6-311 \mathrm{G}-$ (d,p).

The structural parameters of the reactants NH_{3} and HNO_{3}, various intermediates, transition states, and products $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}-$ $\mathrm{NOH}, \mathrm{HONO}, \mathrm{H}_{2} \mathrm{NNO}_{2}, \mathrm{H}_{2} \mathrm{NONO}$, and $\mathrm{H}_{3} \mathrm{NO}$ have been optimized using Becke's three-parameter nonlocal exchange functional ${ }^{24}$ with the nonlocal correlation functional of Lee, Yang, and Parr ${ }^{25}$ (B3LYP approach) with the 6-311G(d,p) basis set. ${ }^{22}$ The same (B3LYP/6-311G(d,p)) method was used for calculation of vibrational frequencies which are necessary for the determination of the nature of different stationary points, as well as obtaining the accurate values of ZPE correction (without scaling) for these points and rate constant calculations. The stationary points (transition states and adjacent local minima) along the reaction paths have been connected by using the intrinsic reaction coordinate (IRC) calculations ${ }^{26}$ at the B3LYP/6-311G(d,p) level. All the calculations have been performed by using the GAUSSIAN- $94{ }^{27}$ program.

III. Results and Discussion

A. Molecular and Transition-State Structures. The total energy of the reactants and the relative energies of the transition states, long-lived intermediates (or local minima), and separated products calculated at various levels of theory are summarized in Table 1. The vibrational frequencies and geometries of individual species calculated at the B3LYP/6-311G(d,p) level of theory are presented in Table 4 and Figures 1-3, respectively. The structures and energies of the key products, $\mathrm{NH}_{2} \mathrm{NO}_{2}$ and $\mathrm{NH}_{2} \mathrm{ONO}$, as alluded to earlier, have been calculated previously in this laboratory by Mebel et al. in conjunction with the NH_{2} $+\mathrm{NO}_{2}$ reaction at the MP2/6-311G(d,p) level of theory. ${ }^{7}$ The

Figure 3. B3LYP/6-311G(d,p) optimized structures (bond lengths in \AA, angles in deg) of transition states of the $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction.
TABLE 3: Optimized Geometries (in \AA and deg) for $H_{2} \mathbf{N O H}$ and $H_{3} \mathrm{NO}$ Species, Calculated by Using HF, MP2, and B3LYP Methods

geometr. parameters	HF/6-31G(d) ${ }^{\text {a }}$	MP2/6-31G(d) ${ }^{a}$	MP2/6-311G(d,p) ${ }^{\text {b }}$	MP2/TZ2P ${ }^{\text {b }}$	MP2/QZ3P ${ }^{\text {b }}$	B3LYP/6-311G(d,p) ${ }^{\text {c }}$	expt ${ }^{\text {b }}$
$\mathrm{H}_{2} \mathrm{NOH}$							
NO	1.403	1.451	1.449	1.446	1.443	1.446	1.453
$\mathrm{OH}(1)$	0.946	0.971	0.964	0.960	0.958	0.962	0.962
NH(2)	1.002	1.021	1.016	1.012	1.011	1.019	1.016
$\angle \mathrm{H}(1) \mathrm{ON}$	104.2	101.3	101.2	101.7	102.0	102.1	101.4
$\angle \mathrm{H}(2) \mathrm{NO}$	104.8	102.9	103.0	103.5	103.8	103.8	103.2
$\angle \mathrm{H}(2) \mathrm{NH}(3)$			105.0	106.0	106.2	105.4	107.1
$\angle \theta$			68.3	67.2	66.7	66.8	67.3
$\angle \mathrm{H}(1) \mathrm{ONH}(2)$	124.0	125.3				125.0	
$\mathrm{H}_{3} \mathrm{NO}$							
NO	1.376	1.421				1.354	
NH	1.010	1.036				1.039	
$\angle \mathrm{HNO}$	111.7	113.2				114.0	

${ }^{a}$ Reference 32. ${ }^{b}$ Reference 31. ${ }^{c}$ Present work.
$\mathrm{H}_{2} \mathrm{NNO}_{2}$ product has C_{s} symmetry. The NNO_{2} fragment is nearly coplanar, while the $\mathrm{H}_{2} \mathrm{NN}$ fragment is slightly pyramidal. The C_{s} mirror plane containing the $\mathrm{N}-\mathrm{N}$ bond is perpendicular to the NNO_{2} plane. The symmetry of the $\mathrm{H}_{2} \mathrm{NONO}$ product is also C_{s}. The two hydrogen atoms of the pyramidal $\mathrm{H}_{2} \mathrm{NO}$ group are reflected by the mirror plane involving the planar NONO chain. As has been shown earlier, ${ }^{7}$ four different isomers of $\mathrm{H}_{2} \mathrm{NONO}$ ((1) H-cis/NONO-cis; (2) H-cis/NONO-trans; (3) H -trans/NONO-cis; (4) H-trans/NONO-trans) can be formed in the $\mathrm{H}_{2} \mathrm{~N}+\mathrm{ONO}$ reaction depending on the approaching angle of the reactants. As follows from our IRC calculation, only the isomer H-trans/NONO-trans of $\mathrm{H}_{2} \mathrm{NONO}$ can be obtained
directly in the case of the $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction under consideration. According to Table 2, the values of geometric parameters (bond lengths and angles) of the $\mathrm{H}_{2} \mathrm{NNO}_{2}$ and $\mathrm{H}_{2}-$ NONO species optimized by us at the B3LYP/6-311G(d,p) level of theory are in good accord with the values calculated earlier ${ }^{7,28,29}$ in the framework of the HF/6-31G(d), MP2/6-311G(d,p), and MCSCF/4-31G methods, and with the data of experimental measurements. ${ }^{30}$ Note that in the case of the $\mathrm{O}(1) \mathrm{N}(2)$ bond length our B3LYP/6-311G(d,p) result differs by $0.201 \AA$ from that of MCSCF/4-31G. ${ }^{29}$ As pointed out by Saxon and Yoshimine, ${ }^{29}$ it is possible that the length of the $\mathrm{O}(1) \mathrm{N}(2)$ bond is overestimated by the MCSCF/4-31G approach.

TABLE 4: Moments of Inertia (in $10^{-40} \mathbf{g} \cdot \mathrm{~cm}^{2}$) and Vibrational Frequencies for Reactants, Products, Intermediates, and Transition States of the Reaction $\mathbf{N H}_{3}+\mathbf{O}_{2} \mathbf{N O H}$, Calculated at the B3LYP/6-311G(d,p) Level

Figure 4. A schematic energy diagram for the potential energy surface of the $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction calculated in the framework of the G2M-(RCC,MP2)//B3LYP/6-311G(d,p) approach.
presented in Figure 4. The reaction takes place via two energetically comparable channels I and II as alluded to above. The first exothermic channel produces $\mathrm{H}_{2} \mathrm{NNO}_{2}$ species via transition state TS1 with a predicted $45.7 \mathrm{kcal} / \mathrm{mol}$ activation barrier with the formation of the intermediate molecular complex LM1, which has a $7.6 \mathrm{kcal} / \mathrm{mol}$ potential well. The second channel is slightly endothermic and leads to the formation of $\mathrm{H}_{2} \mathrm{NONO}$ via transition state TS2 and molecular complex LM2. In this case, the values of the activation barrier and potential
well are 46.0 and $5.1 \mathrm{kcal} / \mathrm{mol}$, respectively. The presence of these shallow wells on the potential energy surface is expected to have a negligible effect on the formation of the energetic nitramide products in view of the great excess of energy they possess after their passage over the transition states. We have not investigated the pathway III connecting two stationary points LM1 and LM2 on the potential surface of the $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$ reaction. The existence of this channel corresponding to the nitro-nitrite rearrangement of $\mathrm{H}_{2} \mathrm{NNO}_{2}$ into $\mathrm{H}_{2} \mathrm{NONO}$ via transition state $\mathbf{T S}(\mathbf{n n r})$ was studied in detail theoretically earlier. ${ }^{7}$ For instance, calculations in the framework of the Gaussian-2 (G2) method, carried out by Mebel with coauthors, ${ }^{7}$ show that the barrier for such structural rearrangement at the transition state $\mathbf{T S}(\mathbf{n n r})$ is $31.2 \mathrm{kcal} / \mathrm{mol}$ with respect to the energy level of $\mathrm{H}_{2} \mathrm{NNO}_{2}$, i.e., $11.6 \mathrm{kcal} / \mathrm{mol}$ higher than the level of the reactants $\mathrm{NH}_{3}+\mathrm{HNO}_{3}$.

It has been found from our IRC calculations that there are two subsequent reaction channels IV $\rightarrow \mathrm{V}$ and IV $\rightarrow \mathrm{VI}$, which begin from intermediate LM2 and lead to the formation of H_{3} $\mathrm{NO}, \mathrm{H}_{2} \mathrm{NOH}$, and HONO products via transition state TS3 and local minima LM3.

According to the result of our IRC calculations, LM2, the complex of $\mathrm{H}_{2} \mathrm{NONO}$ and $\mathrm{H}_{2} \mathrm{O}$, can undergo structural rearrangement via TS3 and LM3 (see Figure 1), producing $\mathrm{H}_{3} \mathrm{NO}$ + HONO by direct dissociation as well as the more stable products $\mathrm{NH}_{2} \mathrm{OH}+\mathrm{HONO}$, followed by the rotation of HONO in LM3 and the exchange of H atoms as clearly indicated by the structures of LM4 and TS4. The negligibly small barrier associated with the rotation of HONO at LM3 was not calculated.

Theoretically, the unimolecular isomerization of $\mathrm{H}_{3} \mathrm{NO}$ to $\mathrm{H}_{2}-$ NOH has been investigated by many groups. ${ }^{31-34}$ The barrier for the isomerization reaction was calculated to be $25.0 \mathrm{kcal} /$ mol at the G2M(RCC,MP2) level of theory, agreeing closely with the results of previous calculations. ${ }^{31,32}$ The isomerization reaction in the present case is mediated by HONO via facile H-exchange involving a seven-centered transition state analogous to LM4. Practically, the formation of $\mathrm{H}_{3} \mathrm{NO}$ and $\mathrm{H}_{2} \mathrm{NOH}$ is irrelevant and inconsequential to the chemistry of the NH_{3} $+\mathrm{HNO}_{3}$ reaction.

As mentioned above, the bimolecular reactions 1 and 2 of NH_{3} with HNO_{3} producing the two isomeric products $\mathrm{H}_{2} \mathrm{NNO}_{2}$ and $\mathrm{H}_{2} \mathrm{NONO}$, respectively, are controlled entirely by the rates of their passage over TS1 and TS2, respectively. By means of the energy barriers calculated and summarized in Table 1 and molecular parameters as well as frequencies presented in Table 4 for the reactants and TSs, TST calculations with tunneling corrections gave rise to the following expressions for their rate constants [in units of $\mathrm{cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$] covering the $300-1000 \mathrm{~K}$ temperature range:

$$
\begin{aligned}
& k_{1}=8.42 \times 10^{11} \mathrm{e}^{-23440 / T} \\
& k_{2}=3.09 \times 10^{12} \mathrm{e}^{-24390 / T}
\end{aligned}
$$

The tunneling correction for reaction 1 amounts to about 48% at 500 K and 12% at 1000 K ; the correction for reaction 2 is, however, negligible $(<1 \%)$ because of its low imaginary frequency. For a broader temperature of $300-3000 \mathrm{~K}$, they can be effectively presented by the following three-parameter forms:

$$
k_{1}=0.81 T^{3.47} \mathrm{e}^{-21670 / T}
$$

$$
k_{2}=23.2 T^{3.50} \mathrm{e}^{-22610 / T}
$$

These rate constants are recommended for kinetic modeling of AN and ADN.

IV. Conclusion

The results of our ab initio MO calculations employing the G2M method reveal the possibility of a nonionic bimolecular reaction taking place between NH_{3} and HNO_{3}. The reaction was found to occur by two distinct transition states producing $\mathrm{H}_{2} \mathrm{O}$ and two reactive isomeric molecular intermediates, $\mathrm{H}_{2}-$ NNO_{2} and $\mathrm{H}_{2} \mathrm{NONO}$, with a similar reaction barrier, $46 \mathrm{kcal} /$ mol . The former, formed by a tighter four-centered transition state, is predicted to be a minor product, although it is energetically more stable than the latter, formed by a looser five-centered transition state. The rate constants for these two processes have been calculated with the transition-state theory; they are recommended for the kinetic modeling of AN and ADN combustion reactions.

Acknowledgment. This work was sponsored partly by Emory University and partly by the Caltech Multidisciplinary University Research Initiative under ONR Grant No. N00014-95-1-1388, Program Manager Dr. Richard S. Miller. Also, we are thankful to the Cherry L. Emerson Center for Scientific Computation for the use of various programs and computing facilities.

References and Notes

(1) Greenwood, N. N.; Earnshaw, A. Chemistry of Elements; Pergamon Press: Oxford, 1984; p 541.
(2) Cotton, F. A.; Wilkinson, G. Adv. Inorg. Chem., 5th ed.; John Wiley: New York, 1988.
(3) Diau, E. W. G.; Lin, M. C.; He, Y.; Melius, C. F. Prog. Energy Combust. Sci. 1995, 21, 1.
(4) Diau, E. W. G.; Halbgewachs, M. J.; Smith, A. R.; Lin, M. C. Int. J. Chem. Kinet. 1995, 27, 867.
(5) Mebel, A. M.; Morokuma, K.; Lin, M. C.; Melius, C. F. J. Phys. Chem. 1995, 99, 1900.
(6) Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1994, 101, 3916.
(7) Mebel, A. M.; Hsu, C.-C.; Lin, M. C.; Morokuma, K. J. Chem. Phys. 1995, 103, 5640.
(8) Diau, E. W. G.; Yu, T.; Wagner, M. A. G. Lin, M. C. J. Phys. Chem. 1994, 98, 4034.
(9) Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. Int. J. Chem. Kinet. 1996, 28, 693.
(10) Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. J. Phys. Chem. 1995, 99, 6842.
(11) Mebel, A. M.; Diau, E. W. G.; Lin, M. C.; Morokuma, K. J. Phys. Chem. 1996, 100, 7517.
(12) Halbgewachs, M. J.; Diau, E. W. G.; Mebel, A. M.; Lin, M. C.; Melius, C. F. Proceedings of the 26th International Symposium on Combustion; The Combustion Institute: Pittsburgh, PA, 1996; p 2109.
(13) Hsu, C.-C.; Lin, M. C.; Mebel, A. M.; Melius, C. F. J. Phys. Chem. A 1997, 101, 60.
(14) Boughton, J. W.; Kristyan, S.; Lin, M. C. Chem. Phys. 1997, 214, 219.
(15) Park, J.; Lin, M. C. J. Phys. Chem. 1997, A101, 5.
(16) Park, J.; Lin, M. C. J. Phys. Chem. 1997, A101, 2643.
(17) Mebel, A. M.; Lin, M. C.; Morokuma, K. Int. J. Chem. Kinet., submitted.
(18) Park., J.; Lin, M. C. Unpublished work.
(19) (a) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622. (b) Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537. (c) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221
(20) Madden, L.; Moskaleva, L. V.; Kristyan, S.; Lin, M. C. J. Phys. Chem. A 1997, 101, 6790.
(21) Park, J.; Dyakov, I. V.; Mebel, A. M.; Lin, M. C. J. Phys. Chem. A 1997, 101, 6043.
(22) Hehre, W.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
(23) (a) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. (b) Hampel, C.; Peterson, K. A.; Werner, H.-J. Chem. Phys. Lett. 1992, 190, 1. (c) Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys. 1994, 99, 5219. (d) Deegan, M. J. O.; Knowles, P. J. Chem. Phys. Lett. 1994, 227, 321.
(24) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) 1992, 96, 2155; (c) 1992, 97, 9173.
(25) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
(26) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;

Wong, M. W.; Andres, J. L.; DeFrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, Revision D. 3; Gaussian, Inc., Pittsburgh, PA, 1995.
(28) Melius, C. F. In Chemistry and Physics of Energetic Materials; Bulusu, S., Ed; Nato ASI 309; 1990; p 21.
(29) Saxon, R. P.; Yoshimine, M. J. Phys. Chem. 1989, 93, 3130.
(30) Sadova, N. I.; Slepnev, G. E.; Tarasenko, N. A.; Zenkin, A. A.; Vilkov, L. V.; Shishkov, I. F.; Pankrushev, Yu. A. Zh. Strukt. Klim. 1997, 18, 865.
(31) Luckhaus, D. Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 346.
(32) Bach, R. D.; Owensby, A. L.; Gonzalez, C.; Schlegel, H. B.; McDouall, J. J. W. J. Am. Chem. Soc. 1991, 113, 6001.
(33) Trindle, C.; Shillady, D. D. J. Am. Chem. Soc. 1973, 95, 703.
(34) Wallmeier, H.; Kutzelnigg, W. J. Am. Chem. Soc. 1979, 101, 2804.

[^0]: * Corresponding author. E-mail address: chemmcl@emory.edu.

