Novel Bimolecular Reactions between NH3 and HNO3 in the Gas Phase

R. N. Musin
Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russia

M. C. Lin*
Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received: November 10, 1997; In Final Form: January 8, 1998

High-level molecular orbital calculations have been performed in the framework of the G2M method to explore the reactivity between NH3 and HNO3, key molecular reactants in ammonium nitrate and ammonium nitramide systems. Two nonionic molecular reaction channels have been identified with a similar reaction barrier, 46 kcal/mol. One channel occurring via a four-member-ring transition state produces H2NNO2 + H2O (1), and the other, taking place via a five-member-ring transition state, yields H2NONO + H2O (2). A transition-state theory calculation employing the predicted energies and molecular parameters gave rise to the rate constants $k_1 = 0.81T^{1.47}e^{-16760/T}$ and $k_2 = 23.2T^{3.50}e^{-22610/T}$ for the temperature range 300–3000 K in units of cm³/(mol·s). In addition to the reactants, products, and transition states associated with the two reaction channels, several local minima (or molecular complexes) and secondary reaction products derived from the structural rearrangement of some of the molecular complexes, such as H3NO and H2NONO, have been identified and their energies calculated at the G2M level of theory.

I. Introduction

Ammonium salts are unstable in their ionic forms at elevated temperatures; they typically sublime to yield ammonia and acids under low-pressure conditions. For ammonium nitrate, NH4 and HNO3 are the low-pressure sublimation products. Under atmospheric or higher pressure conditions, however, NH4NO3 melts near 520 K to produce primarily N2O and H2O via ionic reactions, presumably involving NO2+ and NH3.1,2

In our present series of studies on the mechanisms of reactions involving H/N/O-containing species in conjunction with their potential applications to propulsion and the reduction of NOx, with NH3,3–17 we have investigated the interaction of NH3 and HNO3 over the temperature range 700–1000 K.18

The NH3 + HNO3 reaction above 800 K can be quantitatively characterized by a radical chain process initiated by the decomposition of HNO3, HNO3 + M → OH + NO2 + M, followed by OH + NH3 and the reactions of NH2 with NO2, leading to the formation of N2 and N2O. At temperatures below 800 K, at which the rate of the HNO3 decomposition reaction becomes slower, the same radical mechanism was found to be inadequate for the prediction of the NH3 decay rate and the rates of N2O and H2O formation.18

To search for the processes responsible for the observed “enhanced” rates of the reaction, we have carried out a comprehensive ab initio molecular orbital (MO) theory study of the bimolecular reaction of NH3 and HNO3 focusing on the direct interaction of the nucleophilic N atom in NH3 with the electrophilic N atom in HNO3. The investigation reveals for the first time two reaction paths leading to the formation of highly reactive molecular intermediates, H2NNO2 and H2NONO. These reactive species, whose stabilities have been calculated in our previous study on the NH2 + NO2 reaction,7 may be responsible for the enhanced rate of the NH3 + HNO3 reaction in the low-temperature regime (T ≤ 800 K), particularly under high-pressure conditions. The results of the ab initio MO calculation and the predicted rate constants for these novel redox processes by the transition-state theory (TST) are reported herein.

II. Computation Methods

The potential energy surface for the reaction of ammonia with nitric acid was studied in the framework of the ab initio G2M method,6 which is a modification of the Gaussian-2 (G2) methodology, developed by Pople and co-workers.19 It has been shown earlier that various schemes of the G2M approach enable accurate predictions of the energetics of molecular systems with closed and open shells containing up to six to eight heavy atoms.6,20,21 In the present paper, we have employed the G2M-RCC(MP2) scheme of the G2M method, which gives an average absolute deviation of 1.15 kcal/mol of calculated atomization energies from experiments for 32 first-row compounds tested by the original G2 method19 (in the case of triple-ζ basis set 6-311G(d,p) with 2p and 3d polarization functions). This approach includes a series of MPn (Møller–Plesset perturbation method of the nth order)22 and RCCSD(T) (restricted single- and double-excitation coupled cluster method)23 calculations to improve the MP4 base energy $E_{bas} = E[PMP4/6-311G(d,p)]$ with the correction for electron correlation,

$$\Delta E(RCC) = E[RCCSD(T)/6-311G(d,p)] - E_{bas}$$

the correction for basis set expansion,

$$\Delta E(+3df2p) = E[PMP2/6-311+G(3df,2p)] - E[PMP2/6-311G(d,p)]$$

and the empirical “higher level correction” given in hartrees,

$$\Delta E(HLC,RCC5) = -0.00525n_\beta - 0.00019n_\alpha$$

based on the number of paired and unpaired electrons. Here,
Figure 1. B3LYP/6-311G(d,p) optimized structures (bond lengths in Å, bond angles in deg) of reactants and products involved in the NH$_3$ + HNO$_3$ reaction.

TABLE 1: Total Energies and ZPE (in hartrees) of Reactants and the Relative Energies (in kcal/mol, ZPE Included) of Intermediates LM$_n$ ($n = 1$–4), Transition States TS$_n$ ($n = 1$–4), and Products for the NH$_3$ + HONO$_2$ Reaction, Calculated by B3LYP, MP2, RCCSD(T), and G2M Methods

<table>
<thead>
<tr>
<th>species</th>
<th>ZPE</th>
<th>B3LYP/6-311G(d,p)</th>
<th>MP2/6-311G(d,p)</th>
<th>MP2/6-311 +G(3df,2p)</th>
<th>RCCSD(T)/6-311G(d,p)</th>
<th>G2M (RCC,MP2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$ + HONO$_2$</td>
<td>0.060</td>
<td>-337.482 643</td>
<td>-336.660 643</td>
<td>-336.881 027</td>
<td>-337.012 009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1</td>
<td>36.91</td>
<td>37.48</td>
<td>38.54</td>
<td>37.74</td>
<td>46.45</td>
<td>45.66</td>
</tr>
<tr>
<td>TS2</td>
<td>35.65</td>
<td>57.68</td>
<td>50.51</td>
<td>51.30</td>
<td>45.18</td>
<td>45.96</td>
</tr>
<tr>
<td>LM1</td>
<td>40.36</td>
<td>-20.80</td>
<td>-21.22</td>
<td>-20.33</td>
<td>-20.45</td>
<td>-19.56</td>
</tr>
<tr>
<td>LM2</td>
<td>38.14</td>
<td>6.63</td>
<td>7.86</td>
<td>9.00</td>
<td>1.46</td>
<td>2.60</td>
</tr>
<tr>
<td>TS3</td>
<td>39.12</td>
<td>36.82</td>
<td>43.79</td>
<td>41.51</td>
<td>37.09</td>
<td>34.80</td>
</tr>
<tr>
<td>LM3</td>
<td>39.34</td>
<td>36.95</td>
<td>44.19</td>
<td>41.82</td>
<td>34.50</td>
<td>35.12</td>
</tr>
<tr>
<td>LM4</td>
<td>40.14</td>
<td>3.32</td>
<td>6.64</td>
<td>10.81</td>
<td>0.29</td>
<td>4.46</td>
</tr>
<tr>
<td>TS4</td>
<td>39.35</td>
<td>6.97</td>
<td>9.80</td>
<td>13.62</td>
<td>3.41</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediates and Transition States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1</td>
<td>36.91</td>
<td>37.48</td>
<td>38.54</td>
<td>37.74</td>
<td>46.45</td>
<td>45.66</td>
</tr>
<tr>
<td>TS2</td>
<td>35.65</td>
<td>57.68</td>
<td>50.51</td>
<td>51.30</td>
<td>45.18</td>
<td>45.96</td>
</tr>
<tr>
<td>LM1</td>
<td>40.36</td>
<td>-20.80</td>
<td>-21.22</td>
<td>-20.33</td>
<td>-20.45</td>
<td>-19.56</td>
</tr>
<tr>
<td>LM2</td>
<td>38.14</td>
<td>6.63</td>
<td>7.86</td>
<td>9.00</td>
<td>1.46</td>
<td>2.60</td>
</tr>
<tr>
<td>TS3</td>
<td>39.12</td>
<td>36.82</td>
<td>43.79</td>
<td>41.51</td>
<td>37.09</td>
<td>34.80</td>
</tr>
<tr>
<td>LM3</td>
<td>39.34</td>
<td>36.95</td>
<td>44.19</td>
<td>41.82</td>
<td>34.50</td>
<td>35.12</td>
</tr>
<tr>
<td>LM4</td>
<td>40.14</td>
<td>3.32</td>
<td>6.64</td>
<td>10.81</td>
<td>0.29</td>
<td>4.46</td>
</tr>
<tr>
<td>TS4</td>
<td>39.35</td>
<td>6.97</td>
<td>9.80</td>
<td>13.62</td>
<td>3.41</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$NO + HONO</td>
<td>37.77</td>
<td>29.50</td>
<td>49.20</td>
<td>45.32</td>
<td>42.05</td>
<td>38.16</td>
</tr>
<tr>
<td>H$_2$NO + NO</td>
<td>37.74</td>
<td>20.27</td>
<td>22.96</td>
<td>24.80</td>
<td>15.81</td>
<td>17.66</td>
</tr>
<tr>
<td>H$_2$NONO + H$_2$O</td>
<td>38.12</td>
<td>11.49</td>
<td>14.92</td>
<td>14.55</td>
<td>8.11</td>
<td>7.74</td>
</tr>
<tr>
<td>H$_2$O$_2$ + O$_2$</td>
<td>39.87</td>
<td>-11.22</td>
<td>-11.11</td>
<td>-12.45</td>
<td>-10.69</td>
<td>-12.03</td>
</tr>
</tbody>
</table>
PMPn stands for the spin-projected PUMPn energies for open shell systems and RMPn energies for closed shell systems, and \(n_R\) and \(n_{\alpha}\) are the number of \(R\) and \(\alpha\) valence electrons (\(n_R \geq n_{\alpha}\)), respectively. The ZPE (zero-point energy)-corrected total energy of molecular systems in this scheme is expressed as follows:

\[
E[G2M(RCC,MP2)] = E_{bas} + \Delta E(RCC) + \Delta E(+3df2p) + \Delta E(HLC,RCC5) + ZPE[B3LYP/6-311G(d,p)]
\]

The largest calculation in this case is RCCSD(T)/6-311G-(d,p).

The structural parameters of the reactants \(\text{NH}_3\) and \(\text{HNO}_3\), various intermediates, transition states, and products \(\text{H}_2\text{O}, \text{H}_2\text{NOH}, \text{HONO}, \text{H}_2\text{NNO}_2, \text{H}_2\text{NONO},\) and \(\text{H}_3\text{NO}\) have been optimized using Becke’s three-parameter nonlocal exchange functional\(^{24}\) with the nonlocal correlation functional of Lee, Yang, and Parr\(^{25}\) (B3LYP approach) with the 6-311G(d,p) basis set.\(^{22}\) The same (B3LYP/6-311G(d,p)) method was used for calculation of vibrational frequencies which are necessary for the determination of the nature of different stationary points, as well as obtaining the accurate values of ZPE correction (without scaling) for these points and rate constant calculations. The stationary points (transition states and adjacent local minima) along the reaction paths have been connected by using the intrinsic reaction coordinate (IRC) calculations\(^{26}\) at the B3LYP/6-311G(d,p) level. All the calculations have been performed by using the GAUSSIAN-94\(^{27}\) program.

III. Results and Discussion

A. Molecular and Transition-State Structures

The total energy of the reactants and the relative energies of the transition states, long-lived intermediates (or local minima), and separated products calculated at various levels of theory are summarized in Table 1. The vibrational frequencies and geometries of individual species calculated at the B3LYP/6-311G(d,p) level of theory are presented in Table 4 and Figures 1–3, respectively. The structures and energies of the key products, \(\text{NH}_2\text{NO}_2\) and \(\text{NH}_2\text{ONO}\), as alluded to earlier, have been calculated previously in this laboratory by Mebel et al. in conjunction with the \(\text{NH}_2^+\text{NO}_2\) reaction at the MP2/6-311G(d,p) level of theory.\(^{7}\)
H$_2$NONO product has C_s symmetry. The NNO$_2$ fragment is nearly coplanar, while the H$_2$NN fragment is slightly pyramidal. The C_s mirror plane containing the N–N bond is perpendicular to the NNO$_2$ plane. The symmetry of the H$_2$NONO product is also C_s. The two hydrogen atoms of the pyramidal H$_2$NO group are reflected by the mirror plane involving the planar NONO chain. As has been shown earlier, there are four different isomers of H$_2$NONO ((1) H-cis/NONO-cis; (2) H-cis/NONO-trans; (3) H-trans/NONO-cis; (4) H-trans/NONO-trans) that can be formed in the H$_2$N + ONO reaction depending on the approaching angle of the reactants. As follows from our IRC calculation, only the isomer H-trans/NONO-trans of H$_2$NONO can be obtained directly in the case of the NH$_3$ + HNO$_3$ reaction under consideration. According to Table 2, the values of geometric parameters (bond lengths and angles) of the H$_2$NONO and H$_2$NO NONO species optimized by us at the B3LYP/6-311G(d,p) level of theory are in good accord with the values calculated earlier in the framework of the HF/6-31G(d), MP2/6-311G(d,p), and MCSCF/4-31G methods, and with the data of experimental measurements. Note that in the case of the O(1)N(2) bond length our B3LYP/6-311G(d,p) result differs by 0.201 Å from that of MCSCF/4-31G. As pointed out by Saxon and Yoshimine, it is possible that the length of the O(1)N(2) bond is overestimated by the MCSCF/4-31G approach.
The structure of TS1 leading to the formation of H₂NNO₂ is substantially tighter than that of TS2, which gives rise to its less stable isomer H₂NONO, although their energies are effectively the same as discussed below.

The structures of HONO, H₂NO, and its structural isomer, H₂NONO, are shown in Figure 1. The optimized geometries of the H₂NOH and H₂NO products are presented in Table 3. One can see that the results of our B3LYP/6-311G(d,p) optimization are similar to those obtained by HF/6-31G(d) and MP2 (with different basis sets) methods as well as to experimental data.31,32

Note that the NH₃ + HNO₃ reaction leads to the formation of trans-H₂NONO and planar cis-HONO products of C₂ symmetry. The plane of symmetry of hydroxylamine coincides with the N–OH (hydroxyl group) plane. The optimized geometries of the stable intermediates (local minima LM1 and LM2) and transition states (TS1–TS4) are shown in Figures 2 and 3, respectively. All intermediates of the reaction under consideration are found to be typically weak molecular complexes (as seen from the analysis of structural peculiarities and characters of chemical bonds of these species) with distinct hydrogen bonds.

One of the most interesting findings from the present study is the facile conversion of the H₂NNO₂→H₂O molecular complex, LM2 (which is about 5 kcal/mol more stable than its separated products, H₂NONO and H₂O), to H₂NO and HONO with only a 32 kcal/mol barrier, as will be discussed later.

B. Potential Energy Surface. A schematic energy diagram for the potential energy surface of the NH₃ + HNO₃ reaction calculated in the framework of the G2M-(RCC,MP2)/B3LYP/6-311G(d,p) approach is presented in Figure 4. The reaction takes place via two energetically comparable channels I and II as alluded to above. The first exothermic channel produces H₂NNO₂ species via transition state TS1 with a predicted 45.7 kcal/mol activation barrier with the formation of the intermediate molecular complex LM1, which has a 7.6 kcal/mol potential well. The second channel is slightly endothermic and leads to the formation of H₂NONO via transition state TS2 and molecular complex LM2. In this case, the values of the activation barrier and potential
Reactions between NH₃ and HNO₃

well are 46.0 and 5.1 kcal/mol, respectively. The presence of these shallow wells on the potential energy surface is expected to have a negligible effect on the formation of the energetic nitramide products in view of the great excess of energy they possess after their passage over the transition states. We have not investigated the pathway III connecting two stationary points LM1 and LM2 on the potential surface of the NH₃ + HNO₃ reaction. The existence of this channel corresponding to the nitro—nitrite rearrangement of H₂NNO₂ into H₂NONO via transition state TS(nnr) was studied in detail theoretically earlier. For instance, calculations in the framework of the Gaussian-2 (G2) method, carried out by Mebel with coauthors, show that the barrier for such structural rearrangement at the transition state TS(nnr) is 31.2 kcal/mol with respect to the energy level of H₂NONO₂, i.e., 11.6 kcal/mol higher than the level of the reactants NH₃ + HNO₃.

It has been found from our IRC calculations that there are two subsequent reaction channels IV → V and IV → VI, which begin from intermediate LM2 and lead to the formation of H₂NO, H₂NOH, and HONO products via transition state TS3 and local minima LM3.

According to the result of our IRC calculations, LM2, the complex of H₂NONO and H₂O, can undergo structural rearrangement via TS3 and LM3 (see Figure 1), producing H₂NO + HONO by direct dissociation as well as the more stable products NH₂OH + HONO, followed by the rotation of HONO in LM3 and the exchange of H atoms as clearly indicated by the structures of LM4 and TS4. The negligibly small barrier associated with the rotation of HONO at LM3 was not calculated.

Theoretically, the unimolecular isomerization of H₂NO to H₂-NOH has been investigated by many groups. The barrier for the isomerization reaction was calculated to be 25.0 kcal/mol at the G2M(RCC,MP2) level of theory, agreeing closely with the results of previous calculations. The isomerization reaction in the present case is mediated by HONO via facile H-exchange involving a seven-centered transition state analogous to LM4. Practically, the formation of H₂NO and H₂-NOH is irrelevant and inconsequential to the chemistry of the NH₃ + HNO₃ reaction.

As mentioned above, the bimolecular reactions 1 and 2 of NH₃ with HNO₃ producing the two isomeric products H₂NNO₂ and H₂NONO, respectively, are controlled entirely by the rates of their passage over TS1 and TS2, respectively. By means of the energy barriers calculated and summarized in Table 1 and molecular parameters as well as frequencies presented in Table 4 for the reactants and TSs, TST calculations with tunneling corrections gave rise to the following expressions for their rate constants [in units of cm³/(mol·s)] covering the 300–1000 K temperature range:

\[k₁ = 8.42 \times 10^{11} e^{-23440/T} \]
\[k₂ = 3.09 \times 10^{12} e^{-24390/T} \]

The tunneling correction for reaction 1 amounts to about 48% at 500 K and 12% at 1000 K; the correction for reaction 2 is, however, negligible (<1%) because of its low imaginary frequency. For a broader temperature of 300–3000 K, they can be effectively presented by the following three-parameter forms:

\[k₁ = 0.81 T^{4.7} e^{-21670/T} \]

These rate constants are recommended for kinetic modeling of AN and ADN.

IV. Conclusion

The results of our ab initio MO calculations employing the G2M method reveal the possibility of a nonionic bimolecular reaction taking place between NH₃ and HNO₃. The reaction was found to occur by two distinct transition states producing H₂O and two reactive isomeric molecular intermediates, H₂NNO₂ and H₂NONO, with a similar reaction barrier, 46 kcal/mol. The former, formed by a tighter four-centered transition state, is predicted to be a minor product, although it is energetically more stable than the latter, formed by a looser five-centered transition state. The rate constants for these two processes have been calculated with the transition-state theory; they are recommended for the kinetic modeling of AN and ADN combustion reactions.

Acknowledgment. This work was sponsored partly by Emory University and partly by the Caltech Multidisciplinary University Research Initiative under ONR Grant No. N00014-95-1-1388, Program Manager Dr. Richard S. Miller. Also, we are thankful to the Cherry L. Emerson Center for Scientific Computation for the use of various programs and computing facilities.

References and Notes

(18) Park, J.; Lin, M. C. Unpublished work.

(24) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) 1992, 96, 2155; (c) 1992, 97, 9173.

