Kratzert Bruker Apex2 twin

Mathias Meyer X-ray Group Software Manager

Copy right © 2016 — Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

Context

- Dr. Daniel Kratzert reduced a Bruker Apex2 twin with CAP and Saint and gets significantly better results with saint and TwinAbs
- This presentation gives the workflow for importing and reducing Bruker data and handling twinning
- For the evaluation the forum version 38.43 was used.
- The results will be compare in table form.

Data set import

				Image in	nport/	export opt
e • [data] 1.125,870,680 k of e:\data\2016\08\bruker\DK_ML7		ree		Im/Ex	port	
Name	Ext	Size	Da		Non C	Inner
È []		<dir></dir>	06-		>	Imag
DK_ML766_01_0001	sfrm	270,080	0 07-			
DK_ML766_01_0002	sfrm	270,000	0 07-	-		_
DK_ML766_01_0003	sfrm	269,93	6 07-			
DK_ML766_01_0004	sfrm	269,95	2 07-	-	¥	
DK_ML766_01_0005	sfrm	269,88	8 07-	0	Export	t
DK_ML766_01_0006	sfrm	269,93	6 07-			
DK_ML766_01_0007	sfrm	269,984	4 07-		T	
DK_ML766_01_0008	sfrm	270,010	6 07-		Import	-
DK_ML766_01_0009	sfrm	270.04	8 07-			
DK_ML766_01_0010	sfrm	270.01	6 07-		Tub	ort options
DK_ML766_01_0011	sfrm	269,93	6 07-			-
DK_ML766_01_0012	sfrm	269,88	8 07-			Know
DK_ML766_01_0013	sfrm	269,904	4 07-			
DK_ML766_01_0014	sfrm	270.08	0 07-			-
DK_ML766_01_0015	sfrm	270,112	2 07-			C Trans
DK_ML766_01_0016	sfrm	270.01	6 07-			
DK_ML766_01_0017	sfrm	270.00	0 07-			
DK_ML766_01_0018	sfrm	270,010	6 07-			
DK_ML766_01_0019	sfrm	269,93	6 07-			
DK_ML766_01_0020	sfrm	269,920	0 07-	1	Help	
DK_ML766_01_0021	sfrm	269,95	2 07-		montpa	<u> </u>
DK_ML766_01_0022	sfrm	269,95	2 07-			
DK_ML766_01_0023	sfrm	269,95	2 07-	10-2011 10:4	40 -a-	
DK_ML766_01_0024	sfrm	270.04	8 07-	10-2011 10:4	41-a-	
DK_ML766_01_0025	sfrm	270,000	0 07-	10-2011 10:4	41-a-	
DK_ML766_01_0026	sfrm	269,95	2 07-	10-2011 10:4	41-a-	
DK_ML766_01_0027	sfrm	269.87	2 07-	10-2011 10:4	41-a-	
DK_ML766_01_0028	sfrm	269,85	6 07-	10-2011 10:4	41-a-	
DK_ML766_01_0029	sfrm	269,920	0 07-	10-2011 10:4	41-a-	
DK_ML766_01_0030	sfrm	269,95	2 07-	10-2011 10:4	41 -a-	
DK_ML766_01_0031	sfrm	270.01	6 07-	10-2011 10:4	41 -a-	
DK_ML766_01_0032	sfrm	269,92	0 07-	10-2011 10:	41 -a-	
DK_ML766_01_0033	sfrm	269,920	0 07-	10-2011 10:4	41 -a-	
DK_ML766_01_0034	sfrm	269,984	4 07-	10-2011 10:4	42 -a-	
DK_ML766_01_0035	sfrm	269,98	4 07-	10-2011 10:4	42 -a- +	

0 k / 763.252 k in 0 / 2895 file(s)

	Known format selector (1.0.)	1)
	Known formats with val	id headers
	C Dtrek (Rigaku)	rigaku - CCD/Pilatus, no curved IP
options	C MAR/Rayonix	marNNNN, pck, img - IP, CCD, Rayonix with Mar formats
Known image format (with valid image headers)	Saxi (Bruker)	sax, sfrm - smart (with unwarp format), Apex, Photon50/100
Transform unknown image format to esperanto	C Dectris	cbf - simple \ldots setup with single spindle type PX
	Note: Known formats with	h unsupported headers may be transformed
Cancel		at with an Esperanto importer.

- Open any existing experiment
- Import button

Data set import

Run list and aliases file generator for SAXI data collections
This dialog allows you to quickly generate a ".run file and aliases file for the data reduction of a SAXI data set! 1) You select image name_1_1.sax or name01.001 or name_01_0001.sfrm 2) You select the last image to be considered (It is assumed that all frames between these two are available) 3) Save the file
 You will be prompted for entering some critical parameters (usually default values are DK, as they are taken from image headers) Finally a new CrysAlisPro instance will be launched with the SAXI data set added to the experiment list NOTE: Using CrysAlisPro you can process only SAXI images from APEX1 and APEX2 detectors!
First dc SAXI dc file (*_1_1.sax or *01.001 or *_01_0001.sfrm) Browse E:\data\2016\08\bruker\DK_ML7-66_MM_3843\DK_ML766_01_0001.sfrm Last dc SAXI dc file
Browse E:\data\2016\08\bruker\DK_ML7-66_MM_3843\DK_ML766_07_0455.sfm Help Cancel Save run file

• Open any existing experiment

OK

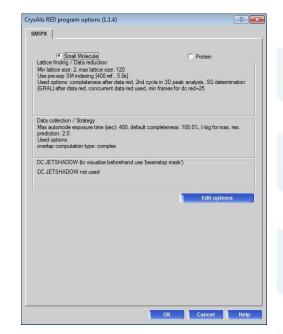
• Import button

Cancel

Data set facts

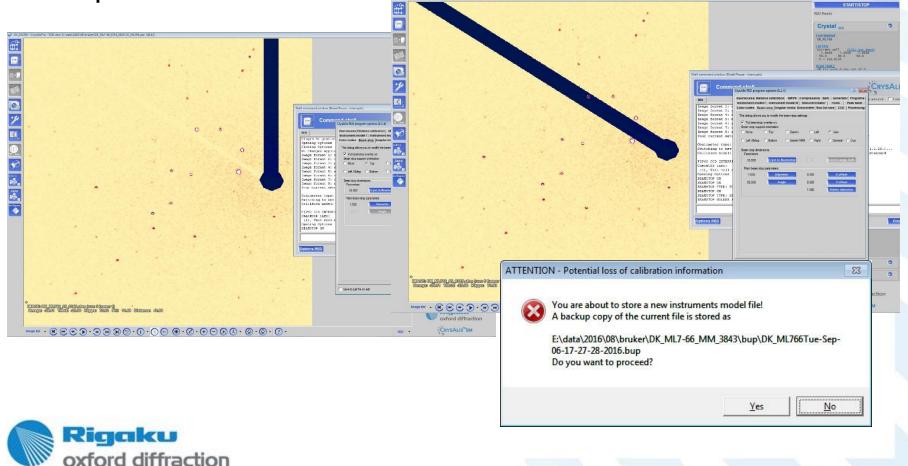
- Mo, Iµs, no Si filter showoing 3λ effect
- Frame width: 0.4, correlated ? Frames

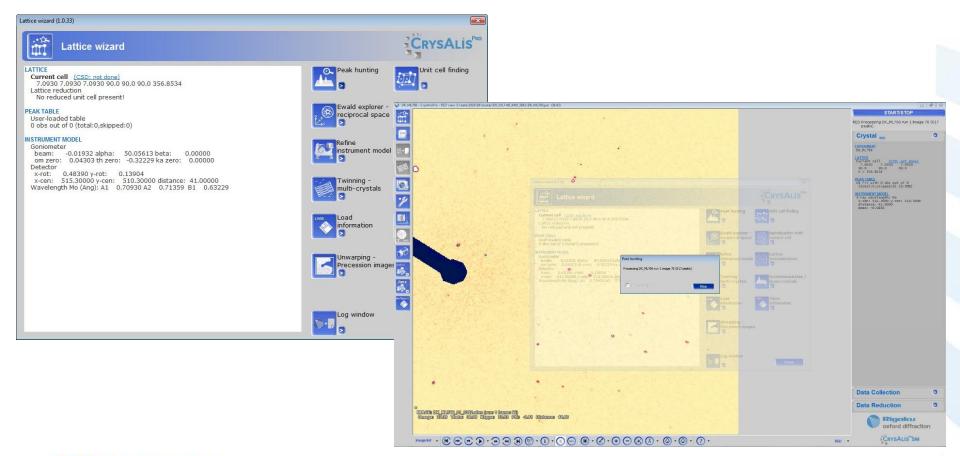
CrysAlisPro run list data


Data 🛛	collection m	ode: corre	lated									
Total	number of f	rames:2889	(scan: 28	89, reference	e: 0)							
Disk :	space: 763.7	9Mb										
Appro	kimate data	collection	time (h:m	in): 10:55								
# t	start	end	width	exposure	sp	eed-rat	omega	theta	kappa	phi	# to do	# done
1 o	1.386	184.186	0.400	5.000+	5.000	0.000	-	30.000	73.926	-0.814	456	456
2 o	-11.114	171.686	0.400	3.000+	3.000	0.000	-	17.500	73.926	4.186	456	456
3 о	21.376	163.775	0.400	3.000+	3.000	0.000	-	10.000	73.926	86.686	356	356
4 o	21.786	174.186	0.400	3.000+	3.000	0.000	-	20.000	73.926	-35.816	380	380
5 o	-28.114	126.686	0.400	5.000+	5.000	0.000	-	-27.500	73.926	11.685	386	386
6 0	18.386	179.186	0.400	4.000+	4.000	0.000	-	25.000	73.926	9.184	401	401
7 o	-7.815	174.186	0.400	3.000+	3.000	0.000	-	20.000	73.926	-60.814	454	454

First opening of the data set

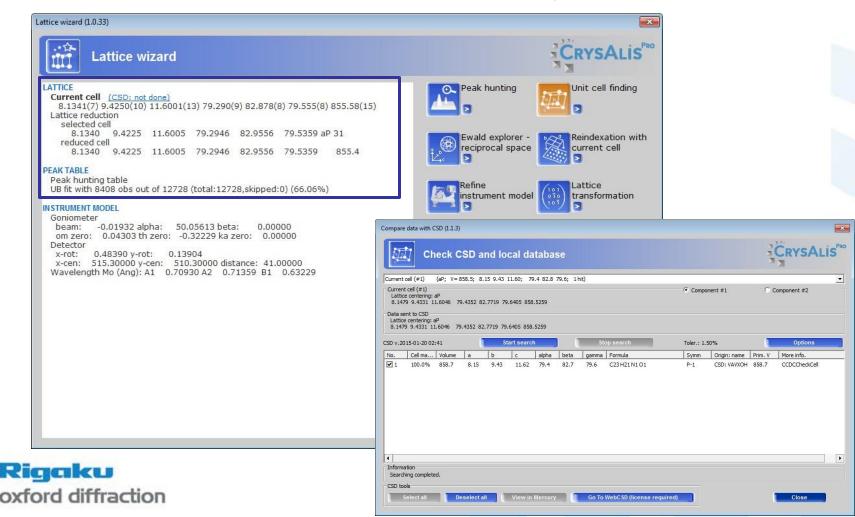
Select SM/PX nature

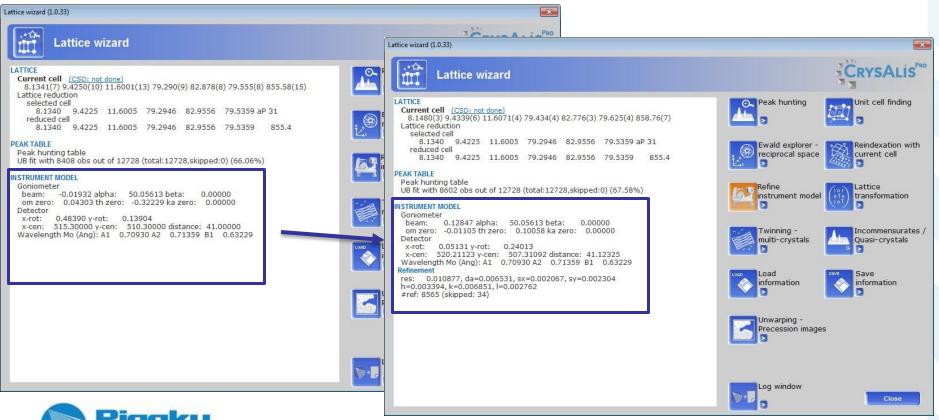

Name	Path	Created	Accessed	Chemical *
mrp160014	E:\data\2016\04\Newcastle Face Indexing\mrp160014_copy	Fri Feb 26 12:07:29 2016	Wed May 25 17:59:06 2016	C6 H8 O6
xp_66	E:\data\2016\04\warrick_movie issue\exp_66_copy	Wed Apr 13 06:32:20 2016	Tue Jun 14 14:10:08 2016	777
w2new	E:\data\2016\04\warrick_movie issue\jw2new_copy	Sun Apr 10 08:13:28 2016	Thu Jun 16 18:40:29 2016	C20 H20 N
exp_48	C:\XcaliburData\Mathias_PX_screens\exp_48	Thu May 19 13:09:32 2016	Mon May 23 08:34:47 2016	777
150716_CudppaO2dppm	E:\data\2016\05\saturn_fixedchi\FixedChi-Saturn	Mon May 30 11:07:06 2016	Mon May 30 11:07:09 2016	777
150716 CudppaO2dppm	E:\data\2016\05\saturn_fixedchi\full	Mon May 30 11:20:22 2016	Mon May 30 11:20:26 2016	C300 H256
Cu_Near48mm	E:\data\2016\05\biberach\calib_XtaLAB_Mon-May-30-18-10-13	Mon May 30 16:11:22 2016	Tue May 31 09:57:45 2016	???
13ICR_L35_260x_2p25_	E:\data\2016\05\20160510_p300k_frx\unpack	Tue Jul 21 11:28:37 2015	Tue May 31 10:43:43 2016	C616 H963
pre_exp_5	E:\data\2016\05\biberach\email1\exp_5	Mon May 30 16:03:24 2016	Tue May 31 11:51:33 2016	777
test	E:\data\2016\05\biberach\Pierre	Tue May 31 08:51:38 2016	Tue May 31 13:33:58 2016	777
test2	E:\data\2016\05\biberach\Bl_SecondDataCollection	Tue May 31 10:51:16 2016	Tue May 31 13:51:08 2016	777
data	E:\data\2016\06\Japan_Bruker_data\data	Fri Dec 18 05:03:58 2015	Fri Jul 15 10:38:45 2016	C27 H39
pre_exp_49	C:\XcaliburData\Mathias_PX_screens\exp_49	Thu Jun 16 09:12:03 2016	running	777
pre_exp_50	C:\XcaliburData\Mathias_PX_screens\exp_50	Thu Jun 16 09:16:36 2016	Wed Jul 13 17:59:30 2016	777
pre_exp_51	C:\XcaliburData\Mathias_PX_screens\exp_51	Thu Jun 16 16:06:51 2016	Thu Jun 16 16:06:51 2016	777
pre_exp_52	C:\XcaliburData\Mathias_PX_screens\exp_52	Thu Jun 16 17:49:31 2016	Mon Sep 05 12:48:04 2016	???
BR-co-PHO A-0193-07	E:\data\2016\07\dusek_twin\/BR-co-PHO A-0193-0721_6	Wed Jun 29 19:01:46 2016	Fri Jul 15 16:42:02 2016	C2 H2 N2
Cy_20160713_2_PAF0	E:\data\2016\07\hypix3000\XLM_INmages	Thu Jul 14 14:40:07 2016	Fri Jul 15 17:29:02 2016	C36 H52
MJR1918_cystiene_30	E:\data\2016\08\george_white\MJR1918_cystiene_300_2	Thu Aug 18 14:32:15 2016	Fri Aug 19 17:47:47 2016	C11 H10 N
DK_ML766	E:\data\2016\08\bruker\DK_ML7-66_MM_3843	Tue Sep 06 17:23:54 2016	Tue Sep 06 17:23:54 2016	??? -
4	III	97		


Set the beam stop

Apex system sometimes use a user angle for the beam stop

First peak hunting


Use default •

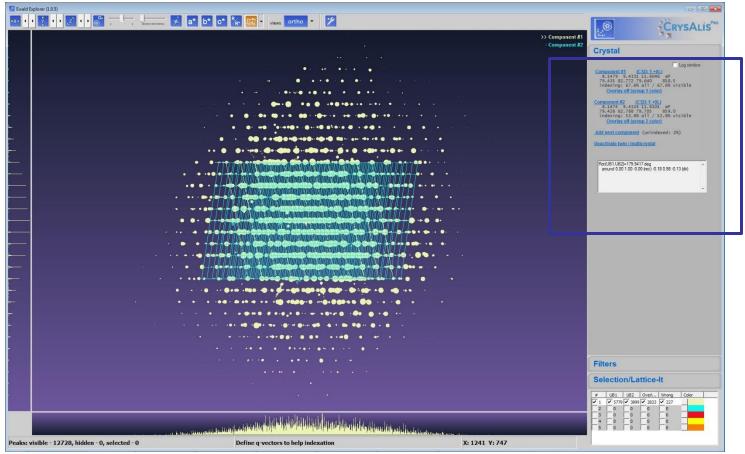

Automatic unit cell finding

• Use default, 66% indexed, in spite of slightly off model

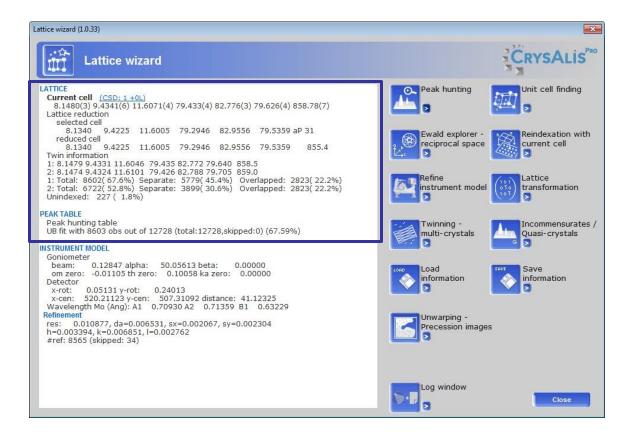
First instrument model refinement

- The header info is not precise. Refine on full data.
- Use default

Use EwaldPro to find the twin


• Find next component in wrong peaks

Use EwaldPro to find the twin


• Easy: 180 deg rotation twin

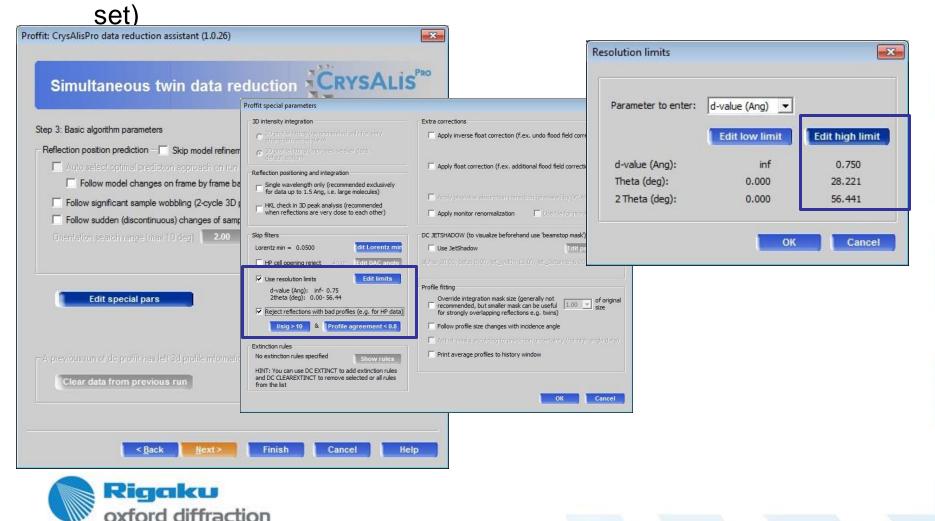
Use EwaldPro to find the twin

• Back to lattice wizard...

• Run the data reduction wizard. Twin reduction auto set...

p 1: Orientation	matrix for dat	ta reduction				
UB - matrix: -0.075024 -0.035193 -0.032212 8.14801 (79.43314 (V = 858.7 lected cell (fr 8.1480 in 1: 8.14786 9 in 2: 8.14739 9	com UM rr/UM 9.4341 1 9.43307 11.60	-0.052833 (9.43408 (82.77588 (ttt/UM f): 1.6071 79.43 462 79.4352 82	2.7719 79.640	0.000005 (0.000002 (11.60713 (79.62596 (9 79.6260 15 858.53).000003)).000004)).000002) 0.00042) 0.00447) aP	
attice extinction Toon't use filte		is lattice extinct		ommensurate s Normal data r	structures eduction (HKL)	
Use filter for:	E			Single q-vect	or Edit	ta m=0

Copy right © 2016 — Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.


Accept the run list [

ep	2: E	xperimen	t run list fo	or data re	duction							
un	list: E	E:\data\2	016\08\	oruker\DI	K_ML7-66_	_MM_38	143\DK_MI	.766		4.6	2	
	1									*.sfrm		
- 33		E:\data	(2016\08 end	vidth	DK_ML7-6	6_MM_3	detector	kanna	phi	start	end	
1	o	1.39	184.19	0.40	5.00	-	30.00	73.93	-0.81		456	
2	•	-11.11	171.69	0.40	3.00	-	17.50	73.93	4.19	1,	456	
3	•	21.38	163.78	0.40	3.00		10.00	73.93	86.69	1,	356	
4	۰		174.19	0.40	3.00	1.5	20.00	73.93	-35.82	1,	380	
5		-28.11		0.40	5.00	-	-27.50	73.93	11.69	1.1	386	
6	•		179.19	0.40	4.00	-	25.00		9.18	100	401	
7	0	-7.81	174.19	0.40	3.00	-	20.00	73.93	-60.81	1,	454	

Copy right © 2016 — Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

• Special pars: All default; Limit the data to 0.75Ang (as done in the B

Background: Smart background

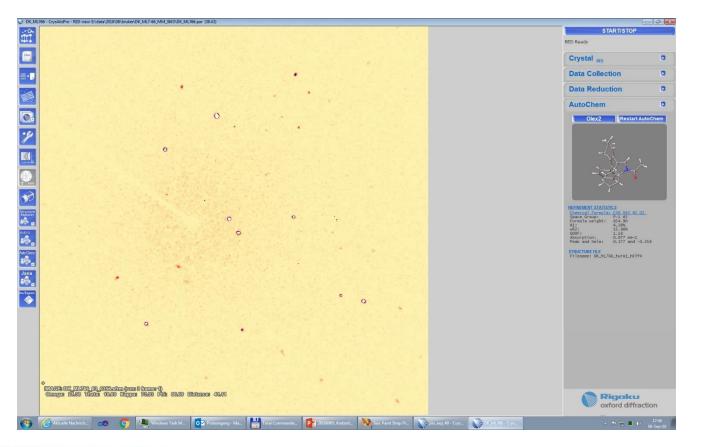
		i data redi	uction CRY	SALIS
- A Dealassa	l avail and an			
ep 4: Background				
For an acurate e	valuation of integrate		l background determination i Re and the repeat frequenc	
Re = 50	Edit Re	Fr = 50	Edit Fr	
may use 2 or 4 ir	a case of lack of phy	sical memory on you leduce background	kground evaluation. Default ur machine (risk of swapping) accumulation to SHORT typ n: 47.6/6.3 Mb	!
	3D integration			mund
Background for	- ckamund from 3D c	entroid evalutation (
	ckground from 3D c	entroid evalutation (good for stable & low backgi	
Average ba fast)	ground (combination	of local and average	geoor for stable & low backgr ge background computation, ires, e.g. protein data, slower	good for weak

This is the most critical for the data set: It seems that the Apex detector has unstable background, thus introducing a bias on the average background method. Such behavior is also seen with other detectors where CAP uses by default Smart background.

• Automatic outlier rejection: default

Proffit: CrysAl	lisPro data reduction assistant (1.0.26)	×
Sim	ultaneous twin data reduction	PRO
100 C	tlier rejection	
redundant	sets usually contain more than the unique data required for the structure determination. This data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and additional CCD specific criteria.	
Outlier rej	iection use outlier rejection	
	aP 8.14801 9.43408 11.60713 79.43314 82.77588 79.62596	
	✓ Use Friedel mates as equivalent	
	< Back Next> Finish Cancel Help	

Chem. formula imported for AutoChem

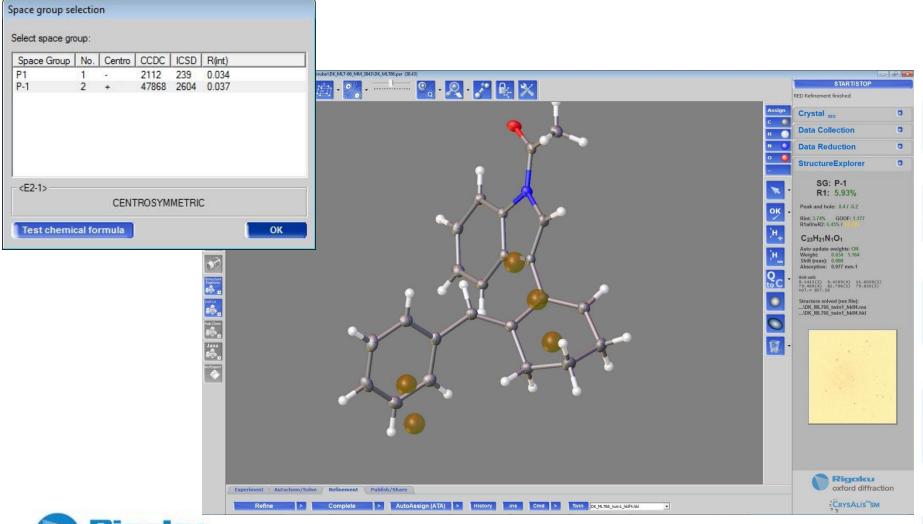

Proffit: CrysAlisPro data reduction assistant (1.0.26)	
Simultaneous twin data reduction	Mu-calculator (1.0.4): Absorption coefficient in mm-1 Cell and wavelength 8.14801 9.43409 11.60713 79.433 82.776 79.626 858.784
Step 6: Output	Z: 1.000
Tip: You may change the output name and directory to keep results of data reductions under different parameter sets (UB, supercells) Output file name: E:\data\2016\08\bruker\DK_ML7-66_MM_3843\DK_ML766	Chemical formula: (e.g. C11 H10 S 02); consult help for syntax and special elements (0s) Numbers follow elements; separate elements by space; C46 H42 N2 02
Change output name	Result 4 element(s): H= 42.00(6.48); C= 46.00(84.36); N= 2.00(4.28); O= 2.00(4.89);
Space group determination Automatic Manual Automatic structure solution (AutoChem) C46 H42 N2 O2 Z=1.00 Edit formula	Formula wt: 654.90 Mu(mm-1): 0.08 Density: 1.266 Z: 1.00 F(000): 398.00 At.vol 9.33 Non-H at. vol 17.18
Completeness computation Make unwarp pictures Max order (one for h, k, l): Resolution: 0.80	mu (mm-1) 0.07708 🗖 Edit mu
< <u>Back</u> <u>N</u> ext > Finish Cancel Help	Help Set mu and formula Cancel

Copy right © 2016 - Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

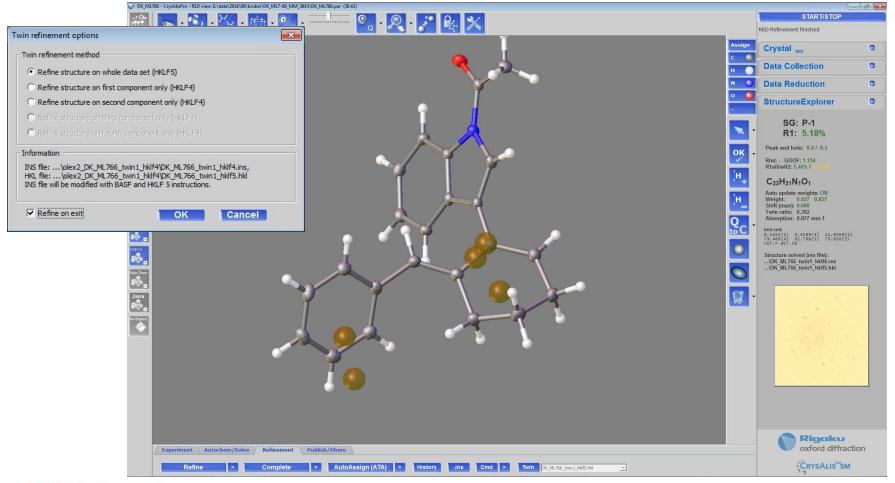
Automatic result

• Auto: based on all hklf4 data.

Tuning your result


• Tuning means what kind of scaling is used and what reflection classes are in the final hklf4 and 5 files

Scale3 abspack (1.0.7) - Refinement of scales, emp. absorption, sensitivity and sample d
hkl-file:E:\data\2016\08\bruker\DK_ML7-66_MM_3843\DK_ML766_twin1.hkl
Output dir E:\data\2016\08\bruker\DK_ML7-66_MM_3843
Symmetry settings
LS refinement control SigCut: SigCut: 100 FixeLude 15 strongest unique reflections (along with all symmetric equivalents)
Frame scaling B-factor/A-factor refinement □ Automatic frame scale assignment ☑ Apply frame scaling How many frames have a common scale? 2 frames = 1 scale Variation restraint (ESD): 0.20000 ☑ Reject frame scales 0.20 ⑧ Reject frame scales 0.20
Empirical absorption correction Automatic parameter selection for absorption correction Max even order: 80 parameters Absorption correction before frame scaling (recommended for strong absorbers)
Detector area scaling How many detector area regions? 4x4 Variation restraint (ESD): 0.20000
Help OK Cancel


Twin data finalization			CRYSALIS
pprof files for twin finalization Browse DK_ML766.rrptwin omponent #1 DK_ML766_twin1.rrpprof omponent #2 DK_ML766_twin2.rrpprof omponent.#3 None mponent.#4 None Twin finalization log file (aP 8.143 9.430 11.603 aP 8.144 9.425 11.609 LATTICES LATTICES (from previous run): DK_		Chemical formula C46 H42 N2 O2 Z = 1.00 Edit formula Lattice symmetry Laue class: 1 V Mathematical Sector 1 V Mathematical Sector 1 V V Mathematical Sector 1 V V V V V V V V V V V V V V V V V V
rrections Twin decomposition Overlap threshold for scaling & space-group determination: ↓ Ensure min completeness in H&LF4 file (for struct solution Numeric and spherical absorption correction	0.400 Edit threshold 1): 80.0% Edit comp	scale3 abspack: scaling, uniformity, en	C Common scales for all twin components
The Show face list Options Options Options		Filters and lattice extinction filters Resolution 2d-value (An No filter Cuse filt Filters 0 active filters	g): inf- 0.80 (dit res limit)): 0.00-52.63 (dit res limit ter for: P-lattice
Show face list bace-group and structure Space group determination Options		Resolution d-value (An 2theta (dec O No filter O use filt	1 Merging (HQ.F5 only) 1 Merge data using: C Use Effected interest

HKLF4 result

HKLF5 result

Compare to Saint/TwinAbs

- The Saint/TwinAbs processing and structure was provided by Dr. Kratzert.
- AC3.0 and Olex2 used automatically a different style of hydrogren adding, so the result was refined using Daniel's result.

Compare to Saint/TwinAbs hklf4

	Saint/TwinAbs	CrysAlisPro 38.43 AC2.1
wR2 refined quantity	0.1581	0.1429
R1all	0.0759	0.0645
R1 (I>4sig) #>4sig	0.0604 (3431)	0.0593 (3101)
#reflections	4240	3395
#par	227	289
l/sig	23.1	28.8

Compare to Saint/TwinAbs hklf5

	Saint/TwinAbs	CrysAlisPro 38.43 AC2.1
wR2 refined quantity	0.1342	0.1233
R1all	0.0546	0.0546
R1 (I>4sig) #>4sig	0.0472 (3582)	0.0518 (4229)
#reflections	4022	4453
#par	228	290
Twin ratio	0.29389	0.30184
I/sig	13.9	50.7

Compare to Saint/TwinAbs

- Now one more time the results refined against Daniel's res file, which carries less parameters
- · Generally the results are similar

Compare to Saint/TwinAbs hklf4

	Saint/TwinAbs	CrysAlisPro 38.43 Daniel res
wR2 refined quantity	0.1581	0.1471
R1all	0.0759	0.0655
R1 (I>4sig) #>4sig	0.0604 (3431)	0.0603 (3101)
#reflections	4240	3395
#par	227	227
l/sig	23.1	26.6

Compare to Saint/TwinAbs hklf5

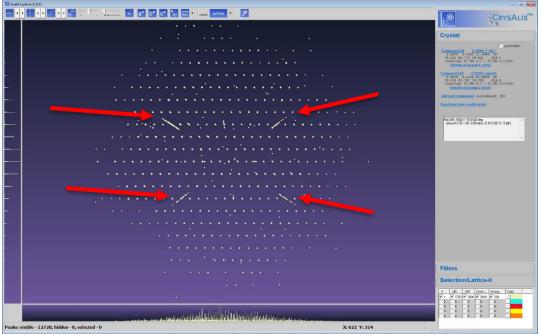
	Saint/TwinAbs	CrysAlisPro 38.43 Daniel res
wR2 refined quantity	0.1342	0.1257
R1all	0.0546	0.0555
R1 (I>4sig) #>4sig	0.0472 (3582)	0.0527 (4229)
#reflections	4022	4453
#par	228	228
Twin ratio	0.29389	0.30205
I/sig	13.9	50.7

Compare to Saint/TwinAbs gain 150

- It is clear from the previous table that the agreement factor results are very similar, but the sigma scheme is significantly different. Especially the hklf5 TwinAbs reduction significantly damps the I/sig in spite of the additional observations mapped in.
- To see the effect of such 'pessimistic' view, I conducted a data reduction as in the previous using a system gain of 150.
- This was done with 39.8f.

Compare to Saint/TwinAbs hklf4

	Saint/TwinAbs	CrysAlisPro 39.8f Daniel res
wR2 refined quantity	0.1581	0.1366
R1all	0.0759	0.0650
R1 (I>4sig) #>4sig	0.0604 (3431)	0.0527 (2814)
#reflections	4240	3435
#par	227	227
l/sig	23.1	20.6


Compare to Saint/TwinAbs hklf5

	Saint/TwinAbs	CrysAlisPro 39.8f Daniel res
wR2 refined quantity	0.1342	0.1238
R1all	0.0546	0.0560
R1 (I>4sig) #>4sig	0.0472 (3582)	0.0476 (3898)
#reflections	4022	4531
#par	228	228
Twin ratio	0.29389	0.30447
I/sig	13.9	17.5

Extra mention 3I effect

• Ewald with large steak. Missing Si filter. This will mess up SG extinctions on higher symmetry SGs.

J. Appl. Cryst. (2011). 44, 763-771, doi:10.1107/S0021889811016232

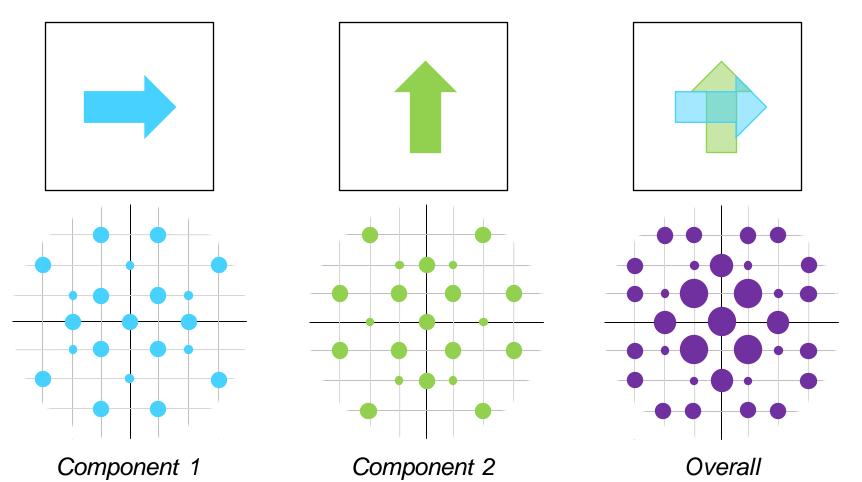
Low-energy contamination of Mo microsource X-ray radiation: analysis and solution of the problem P. Macchi, H.-B. Bürgi, A. S. Chimpri, J. Hauser and Z. Gál

Theory: Reflection de-convolution

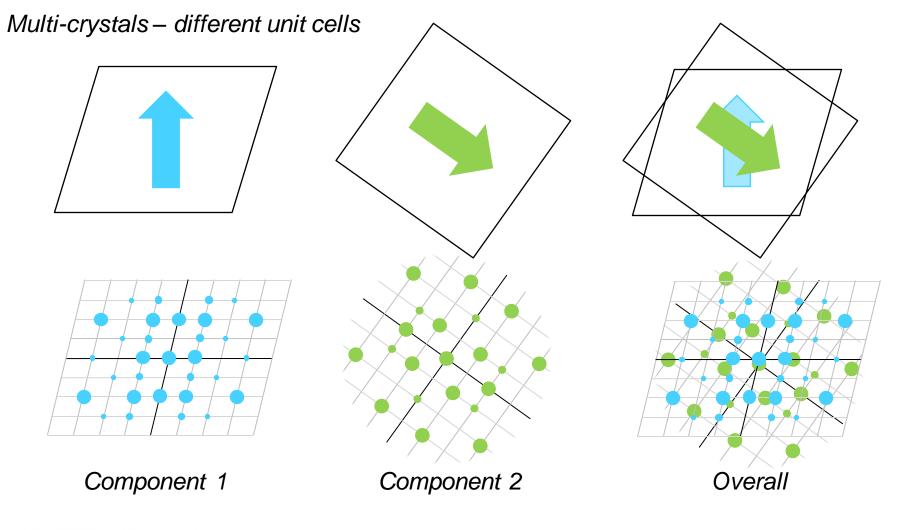
- Twin law
- Reflection overlap
- Overlap ratio

- The following slides are adapted from a 2013 webinar
- It introduces some of the CrysAlis^{Pro} twinning concepts

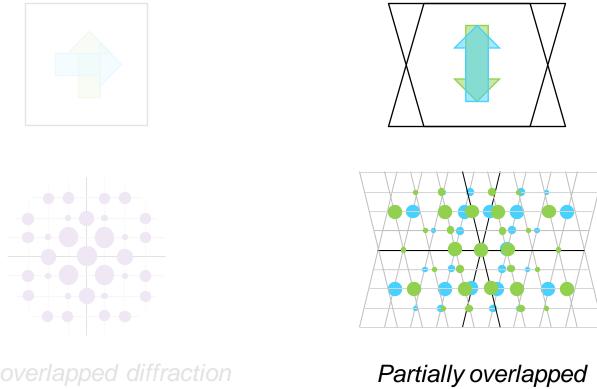
Twinning*: Challenges for the crystallographer


- Identify 'proper' unit cell(s); if possible at the screening/preexperiment stage
- Reduce overlapping data
- De-convolute and correct data
- Solve the structure
- Refine in best possible way

*non-merohedric

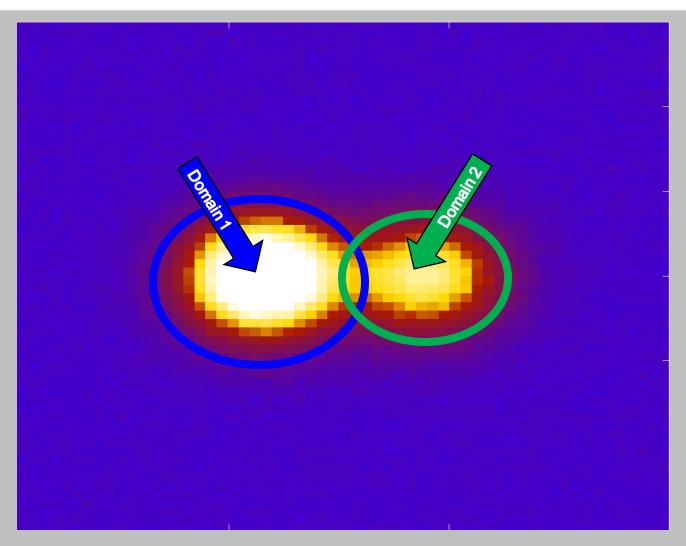

Introduction to Twinning Fully overlapped diffraction patterns

Merohedral twins



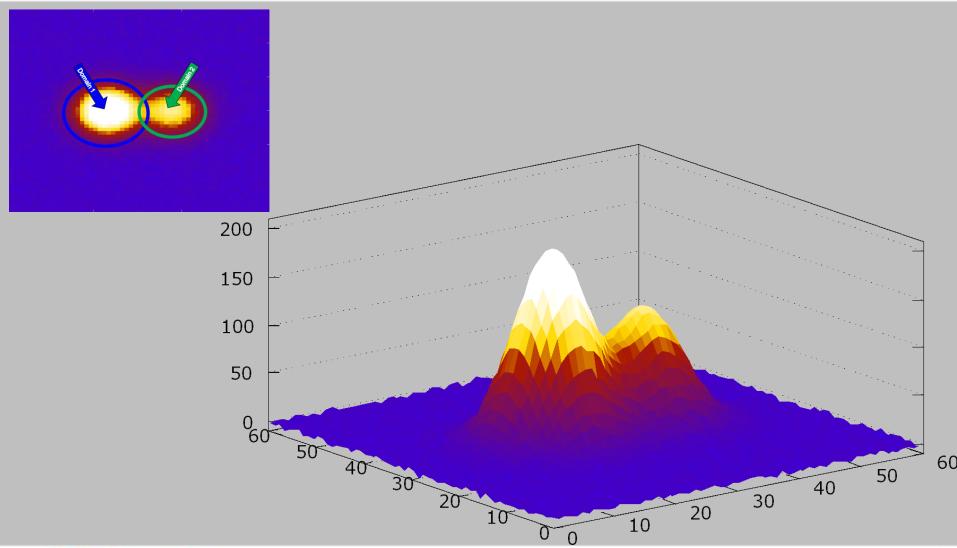
Introduction to Twinning Partially overlapped diffraction patterns

Introduction to Twinning

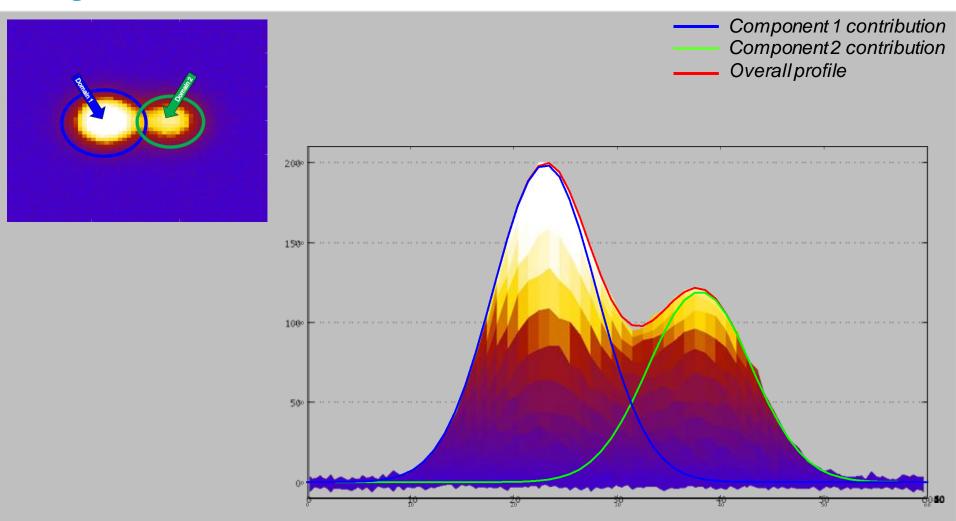


Fully overlapped diffraction patterns can't be separated at integration

Partially overlapped reflections can be treated during integration

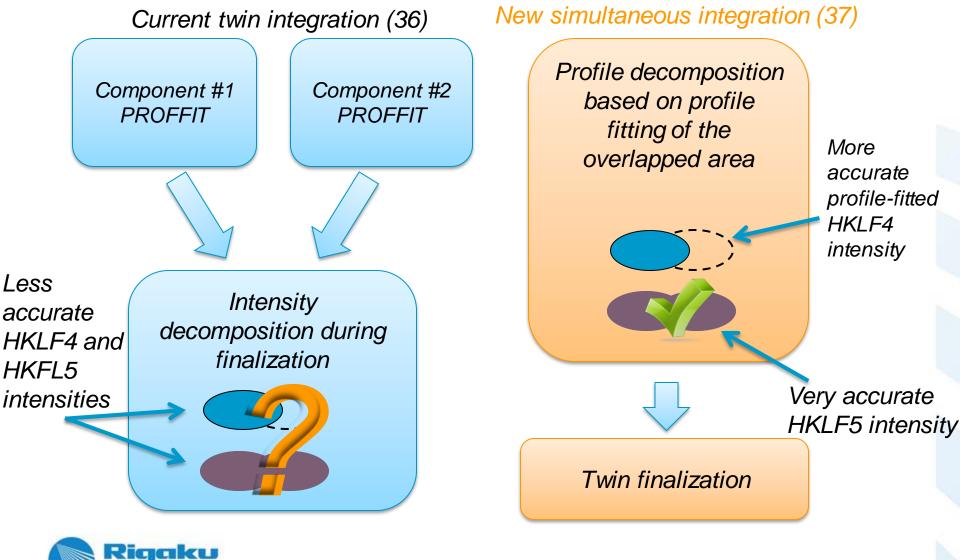


Twinning Integration


Twinning Integration

Copy right © 2016 - Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

Twinning Integration



Current vs. new approach

oxford diffraction

New features

- Profile fitting
- Smart background (combination of local and average background)
- Bad-profile rejection filter
- Completeness-based reflection selection for HKLF4 file:
 - User does not have to adjust thresholds to obtain reasonable completeness
 - If the completeness of isolated reflections is below the requirement:
 - Reflections are sorted by overlapping factor
 - Starting from least overlapping there are added to the file until minimum required completeness reached (default 80% - enough to solve the structure in majority of cases)

Twinning Integration output

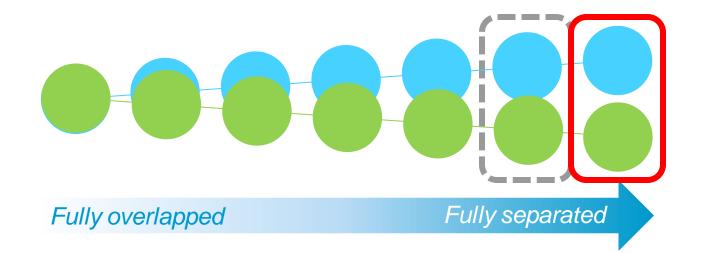
Exp_1_twinN_HKLF4.hkl

Use for structure solution

Contains:

- Domain N only reflections
- Domain N portion of reflections below full overlap threshold (i.e. detwinned data)

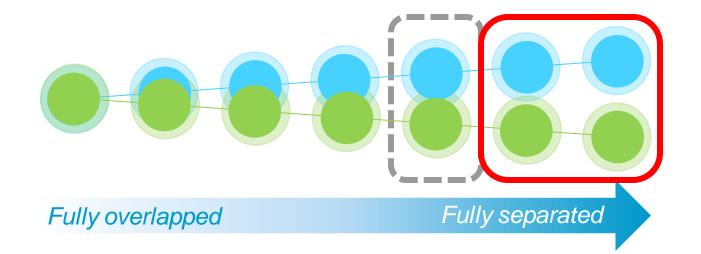
Exp_1_twin1_HKLF5.hkl


Use for structure refinement Contains:

- All reflections
- Any overlapped reflections are not detwinned

The Twin Challenge Integration treatments – profile size

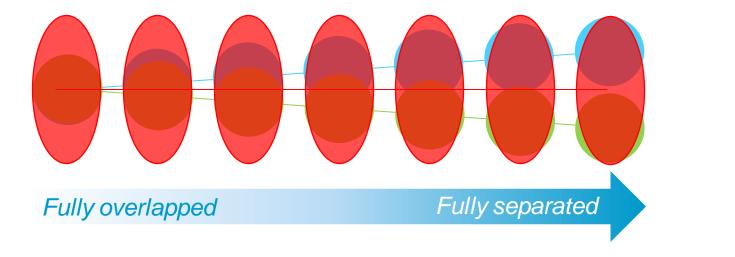
With typical masks, in this example, few reflections are fully separated...


Component 1 profile mask

Component2 profile mask

Twinning Integration treatments – profile size

Using smaller masks can reduce overlap meaning more separate reflections

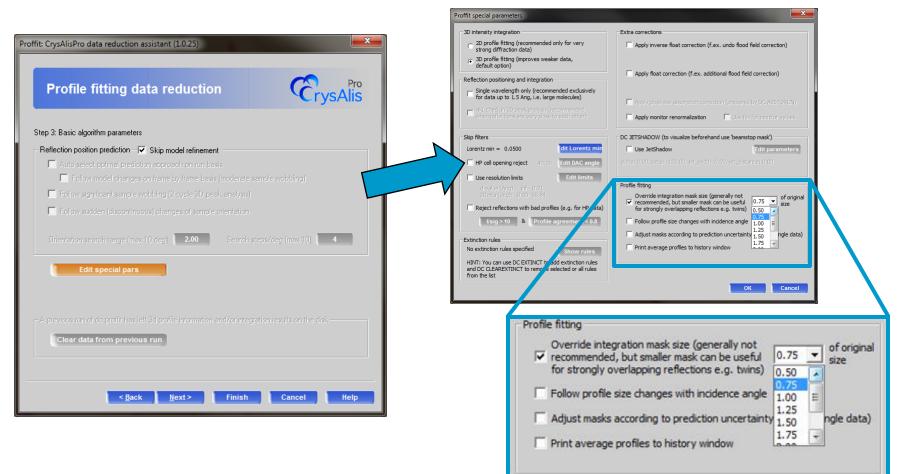

Component 1 profile mask

Component2 profile mask

Twinning Integration treatments – profile size

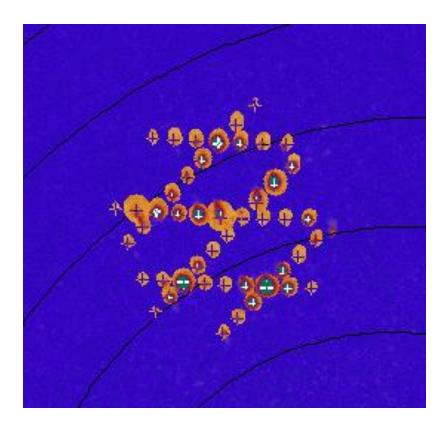
Alternatively, if separation is small enough, and depending on the nature of the twin, twinning can sometimes be ignored entirely by *increasing* profile mask sizes and treating as a single crystal

Increase Profile

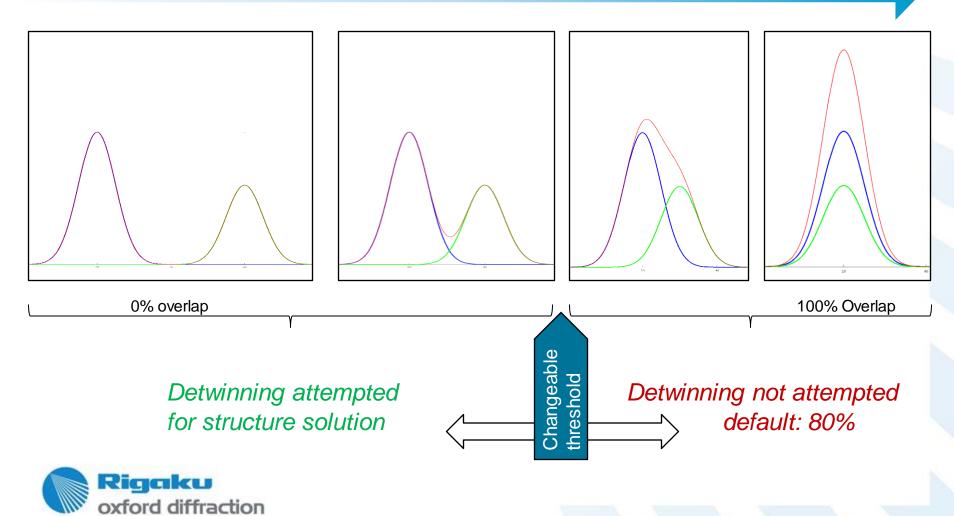

Component 1

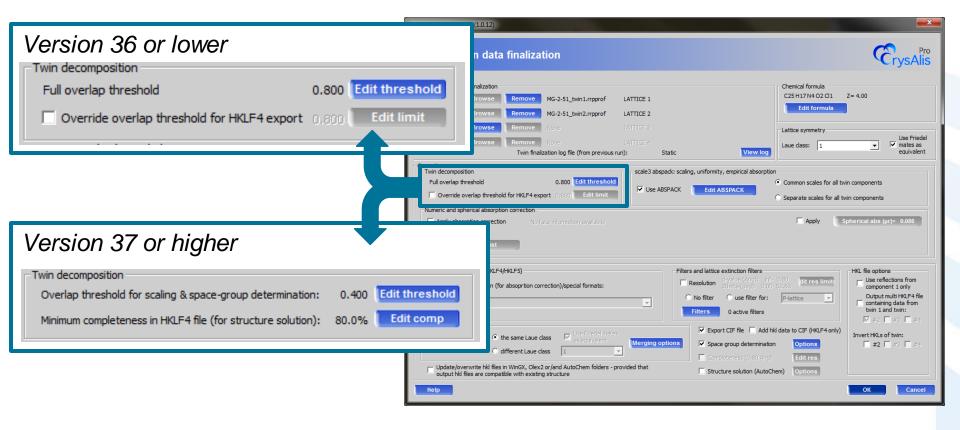
Component2

Twinning Integration treatments – profile size

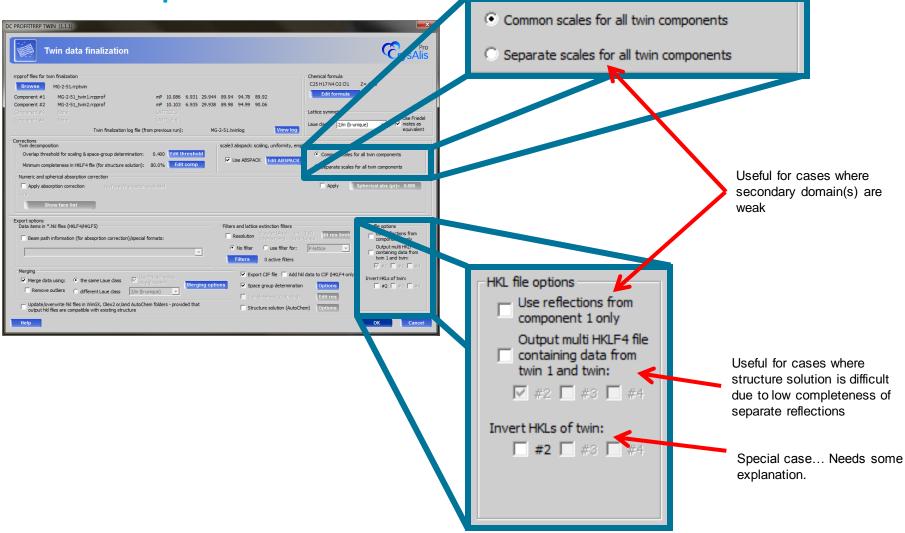

Altering profile mask sizes in CrysAlis^{Pro}

Twinning Integration treatments – smart background

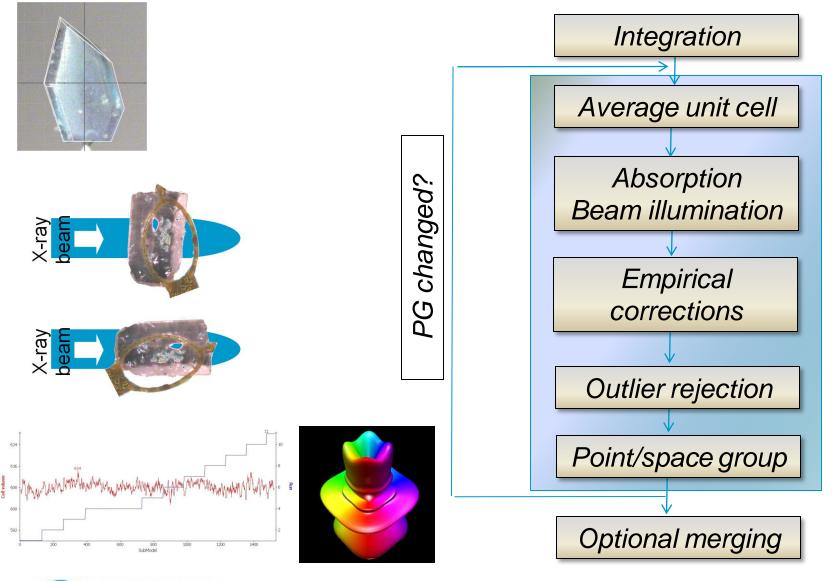

- For datasets with uneven backgrounds, smart background can help.
- From v37 upwards, smart background is now twin enabled


Twinning Post Integration treatments – overlap threshold

Increasingly difficult deconvolution


Copy right © 2016 — Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

Twinning Post Integration treatments – overlap threshold



Twinning Additional options

Good data quality through full post corrections

Thank you for listening!

Find out more at

www.rigaku.com

